Analysis of Substrate Modes in a (Al,In)GaN/SiC Semiconductor Laser using Finite Element Approach

Valerio Laino, Bernd Witzigmann
Integrated Systems Laboratory, ETH Zurich, Switzerland

Matthias Streiff
Sensirion AG, Zurich, Switzerland

Adrian Bregy
Synopsys Switzerland Ltd., Zurich, Switzerland

Andreas Witzig
Institut für Solartechnik SPF, HSR Rapperswil, Switzerland

Ulrich T. Schwarz
Angewandte und Experimentelle Physik, Universität Regensburg, Germany
Outline

- Motivation
- Problem definition
- Solution of the Helmholtz eq.
- Substrate modes explanation
- Design variations
- Conclusion and outlook
Motivation

Oscillations in Hakki-Paoli Gain Measurements

- (Al,In)GaN on SiC
- no oscill. on Sapphire

Secondary Lobes in Far Field

Far-field: z=20µm
Near-field: z=30nm
Facet: z=0

Computational Optoelectronics
(In/Al)GaN edge emitting blue laser (OSRAM)

Device Description

Device Description II

- p-dopant induces optical loss
- optical mode extends into substrate (1D TMM)

<table>
<thead>
<tr>
<th>opt. loss [1/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
</tr>
<tr>
<td>p-doped GaN</td>
</tr>
<tr>
<td>n-doped GaN</td>
</tr>
<tr>
<td>SiC</td>
</tr>
</tbody>
</table>

for details:
APL 85, N. 9, 2004
APL 68, N. 5, 1996
APL 68, N. 22, 1996
APL 80, N. 1, 2002
JJAP 33, pp. 2479, 1994
Hypothesis:

substrate induces periodic variations in modal loss

\[G = \Gamma \cdot g - \alpha_{\text{cavity}} - \alpha_{\text{mirror}} - \alpha_{\text{substrate}} \]
Solution of Helmholtz Equation

- finite element 2-D
- vectorial formulation to describe interfaces properly
- complex notation for refractive index (gain/loss)
- boundary conditions: Dirichlet + PMLs
- two steps: first guess for model including substrate
Solution of Helmholtz Equation

eigenvalue:
real and imaginary part of effective cavity index

eigenvector:
spatial distribution of electric field intensity

plot imaginary part of eigenvalue vs. photon energy
Available Data

- spectral optical gain (Hakki-Paoli)
- SiC optical loss vs. energy
- Epitaxial structure
- SEM picture (cross section)
Simulation Results

- evanescent wave excites propagating wave in substrate
- bottom gold reflects
- standing wave in substrate
 - analysis of cavity loss
Simulation Results

- **Cavity Loss**: 52 [1/cm]
- **Oscillation Amplitude**: 11 [1/cm]
- **Oscillation Period**: 12 [meV]

Measurements
Simulations

Active region not pumped

Photon Energy [eV]

Optical Cavity Gain [1/cm]

Integrated Systems Laboratory
Computational Optoelectronics

ETH Zürich
Origin of Oscillations in Spectral Gain

- $E_{ph} = 2.940$[eV]
- $E_{ph} = 2.935$[eV]

Integrated Systems Laboratory
Computational Optoelectronics
ETH Zürich
Variation of Buffer Thickness

Buffer Layer Thickness Change [nm]

Optical Cavity Gain [1/cm]

Oscill. Amplitude [1/cm]

Photon energy

Gain

Integrated Systems Laboratory
Computational Optoelectronics

ETH Zürich
Variation of Substrate Loss

![Graph showing the variation of Optical Cavity Gain and Oscill. Amplitude with Substrate Loss.]

Integrated Systems Laboratory
Computational Optoelectronics

ETH Zürich
Variation of the p-doped Regions Loss

Optical Cavity Gain [1/cm]

Oscill. Amplitude [1/cm]

p-doped Material Loss [1/cm]

photon energy

Integrated Systems Laboratory
Computational Optoelectronics

ETH Zürich
Variation of Insulating Layer Thickness

Integrated Systems Laboratory
Computational Optoelectronics

ETH Zürich
Variation of Material Gain

Mode Gain [1/cm]

Optical Cavity Gain [1/cm]

Oscill. Amplitude [1/cm]

Photon energy

Gain

Integrated Systems Laboratory
Computational Optoelectronics

ETH Zürich
Conclusions

1. Oscillations in gain spectra:
 - source is substrate mode
 - strong loss contribution by bottom gold at resonance

2. TCAD analysis of cavity loss:
 - main loss sources are p-cladding & top gold
Design Recommendations

1. To decrease oscillation amplitude:
 - increase buffer layer thickness
 - increase substrate loss

2. To decrease total cavity loss:
 - decrease p-dopant loss
 - increase insulating layer thickness
Thank You!

Acknowledgments:

valerio.laino@iis.ee.ethz.ch

Integrated Systems Laboratory Computational Optoelectronics

ETH Zürich