Features of light to current transformations in organic devices

Jean-Michel Nunzi

Physics and Chemistry Departments, Queen’s University, Canada

Photovoltaic effect
Auger Fountain electroluminescence
Polymer screens

Seiko-Epson / CDT
June 2000
Dupont / Uniax, US

Toshiba, Japan

Siemens, Germany

COVION, Germany

DEL polymère sur substrat souple

07, Delaware
Device structure
Interfaces and junction

Structure bicouche
(p-n)
ITO/PEDOT-PSS/CuPc/C_60/BCP/Al

Structure réseaux interpénétrés
(co-évaporées)
ITO/PEDOT-PSS/CuPc:C_60/BCP/Al

NUSOD 2007, Delaware
Working principles

- **Anode**
- **Substrate**
- **Cathode**
- **EL material**

ANODE
- **Hole Injection**

CATHODE
- **Electron Injection**

Transport

Recombination electron/hole

Exciton

Deexcitation
- **Radiative**
- **Non radiative**

Fundamental

NUSOD 2007, Delaware
Rubrene LED

Low-threshold EL

NUSOD 2007, Delaware
Pac:PTCDI cell - about 2% eff

Properties:
- Voc = 0.415 V
- Jsc = -7.62 mA cm$^{-2}$
- Fill Factor = 0.355
- Efficiency = 1.14%

ITO/PEDOT/PENTACENE:PTCDI-C$_{13}$H$_{27}$ 100 nm/BCP/Ag: in dark and under illumination (mW cm$^{-2}$)

Graph:
- Current Density (A cm$^{-2}$) vs. Voltage (V)
- IPCE% vs. Wavelength (nm)

Results:
- 82.75% IPCE @ 662 nm

References:
- APL 89, 113506, 2006
Rubrene / PDI solar cell

![Rubrene molecule]

![Diagram of PV cell]

Current (mA/cm²)

- dark
- sun

Voltage (V)

Large V_{oc} PV cell

NUSOD 2007, Delaware
Rubrene / PDI solar cell in dark under higher fw bias

Same light as Rubrene LED
But injection and EL start at 1V!

New up-conversion mechanism?

Rubrene / C$_{60}$ device

Good PV features (2.9% AM 1.5)
Amaizing EL feature:

EL threshold \approx PV V_{OC}

Adv. Mater – in press

Rubrene / C60 device
Auger fountain up-conversion mechanism in heterostructures

FIG. 2. Sketch of the cold Auger process at the GaAs/ GaInP₂ interface, carrier cooling and trapping, and PL from the GaInP₂ with its composite structure.

Auger fountain electroluminescence

- Charges of both signs accumulate at the interface under 1V-bias
- (-) from C_{60} recombine with (+) from rubrene, exciting CT interface states
- Energy stored at the interface is subsequently transferred to an electron in C_{60}
- Electron is resonantly excited up to the LUMO of rubrene
- Electron recombines radiatively with a hole in the rubrene layer
Charge density & E-field

Current density $j = n.q.\mu.E$ across the device is a constant
No net charges cross:
rate of bimolecular recombination per unit surface is exactly $B = j/q$.
Rate R of electron up-conversion to the LUMO of rubrene estimated as:
B times cross section σ of the energy exchange
 X life-time τ of exciplex
 X flux on electrons to interface j/q.
That is $R \approx B.\sigma\tau.j/q$.

External quantum efficiency η_{EQE} of up-converted EL is

$$\eta_{\text{EQE}} \approx R. \eta_{\text{EL}} / (j/q) = B.\sigma\tau\eta_{\text{EL}}$$

We find experimentally $\eta_{\text{EQE}} = 10^{-4}$ when $j = 1$ A/cm2.
$\eta_{\text{EL}} = 10^{-2}$, is external coupling efficiency rubrene thin film
We finally get CT exciplex $\sigma\tau \approx 1.6 \times 10^{-21}$ cm2s and $\sigma = 10^{-14}$ cm2
That yields $\tau \approx 10^{-7}$ s
Organic Dual Device
Organic materials can be tailored to achieve better functionalities

Acknowledgments: U-Angers, ANR, EC
CRC, NSERC, Faculty of Arts and Sciences at Queen’s U