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Abstract—We investigate the collisions of counterpropagating
Bragg solitons in a dual-core optical coupler where one core has
cubic-quintic nonlinearity and is coupled to another linear core
equipped with a uniform Bragg grating. The outcomes of the
collisions are diverse and exhibit rich dynamics.

Index Terms—Moving Bragg solitons; Bragg grating; Cubic-
quintic nonlinearity

I. INTRODUCTION

The periodic variation of the refractive index along an
optical fiber gives rise to fiber Bragg gratings (FBGs). In
the linear regime, FBGs have been used as dispersion com-
pensators, filters and format converters [1–3]. A well-known
feature of the FBGs is that the coupling between the forward
and reflected waves gives rise to a strong dispersion that can
be significantly larger than the inherent dispersion of silica
[4]. At sufficiently high optical intensities, the nonlinearity
can counterbalance the grating-induced dispersion leading to
formation of Bragg grating (BG) or gap solitons. Bragg
solitons have been observed experimentally in a single Bragg
grating [5, 6]. Owing to their potential applications in novel
all-optical devices such as logic gates, optical delay lines and
buffers, BG solitons have been investigated theoretically in
different structures and nonlinearities, such as coupled Bragg
gratings, photonic crystals, nonuniform gratings and cubic-
quintic nonlinearity [7–10].

In this work, we analyze the dynamics of collisions of
counterpropagating Bragg solitons in a semilinear coupler
where one core has cubic-quintic nonlinearity while the other
core is linear and is equipped with a uniform Bragg gratings.

II. THE MODEL

Starting from Maxwell’s equations and following the meth-
ods described in [7], one can derive a system of partial
differential equations for the propagation of light in the dual-
core system composed of a nonlinear core with cubic-quintic
nonlinearity which is coupled to a linear core with a uniform
Bragg grating. Upon transformation of the system to the

moving coordinates, one arrives at the following system of
partial differential equations:
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In Eqs. (1), Uand V represent the forward- and backward-
propagating waves in the nonlinear core, while their counter-
parts in the linear core are denoted by Φ and Ψ , respectively.
In the nonlinear core, q denotes the strength of the fifth-order
nonlinearity, and c and λ are the group velocity ratio and the
BG coupling coefficient, respectively, in the linear core. The
group velocity in nonlinear core has been set to 1. σ represents
the normalized velocity of moving solitons.

The analysis of the linear spectrum of the system reveals
that there are three band gaps in the model, termed upper,
lower, and central band gaps. Moving soliton solutions only
exist only in the upper and lower band gaps. There exist two
types of such solitons in each bandgap, with varied parity and
phase, referred to as Type 1, and Type 2.

III. COLLISION DYNAMICS

To analyze the dynamics, we numerically solve Eqs. (1)
with the following initial conditions:
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Fig. 1. Examples of the collision of Type 1 stable solitons in the upper band
gap at Ω = 1.15, q = 0.23, λ = 0.3, c = 1.5, σ = 0.1 for (a) in-phase
solitons and (b) π-out-of-phase solitons. Examples of the collision of Type 1
stable solitons in the lower band gap at Ω = −0.87, q = 0.16, λ = 0.3,
c = 0.3, σ = 0.1 for (c) in-phase solitons and (d) π-out-of-phase solitons.

where the subscripts σ± denote identical velocities of the
counterpropagating solitons. The initial separation and phase
difference between the moving solitons are represented by
∆X and ∆θ, respectively. Moving solitons of only the Type
1 category are found to be stable; hence, our analysis has
been confined to collisions of Type 1 stable solitons. Figure 1
presents examples of in-phase and π-out-of-phase collisions,
respectively, in the upper and lower band gaps.

In-phase solitons in the upper and lower bandgaps, such
as those in Figs. 1 (a) and (c), momentarily merge and then
pass through each other with negligible decrease in energy but
increase in velocity; the separation is symmetric. For the π-
out-of-phase condition, two symmetrically separating solitons
are generated (Figs. 1(b) and (d)). Unlike the in-phase solitons,
a phase difference of π causes the velocity to decrease post
collision. It is found that in majority of cases, the collisions
of the moving solitons are ‘quasi-elastic’.
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