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Abstract—The simulation of thin film semiconductor devices
is challenging, partly due to the unknown material and device
parameters. In this contribution, we present two different ap-
proaches to determine the missing material and device parame-
ters from measurements. They both have in common that they
are based on machine learning (ML) and numerical models. First,
a numerical model describing the experiment is used to generate
synthetic data to train a machine learning model the underlying
material parameters. After successful training, a measurement is
presented to the ML model to predict the parameters. In a more
recent physics-informed ML approach, we integrate the model
into the ML method and thus reduce the training data set.

Index Terms—synthetic data, material parameter extraction,
PINNs, thin film semiconductor device

I. INTRODUCTION

To further improve organic light-emitting diodes [1]
(OLEDs) and other optoelectronic devices in terms of e.g.
stability and efficiency, a model describing all major physical
processes in the optoelectronic device is of high importance.
Such models rely on the availability of material parameters.
These parameters are usually obtained by tailored measure-
ments. Nevertheless, they can vary for different measurement
techniques, depend on the neighbouring layers, or are not
accessible by measurements. In these cases, least-square al-
gorithms where the the sum of squared differences between
the measurement and simulation is minimized by varying the
material parameters are used to determine the parameters.
Depending on the number of parameters and their correlation
the task may become quite complex and requires domain
knowledge to guide the search in the right direction. With
the rise of ML techniques in the last decade, we will try to
combine the advantages of ML with the numerical model.

II. DATA GENERATION AND ML TRAINING

In the first approach, we employ a numerical model to
generate a synthetic data set that is then analyzed by a
ML model as explained in more details in [2]. In Fig.1 the
workflow to extract the material parameters is outlined.

In the example, seven material/device parameters of an
organic single carrier p-doped/intrinsic/p-doped device [3]
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Fig. 1. Workflow of synthetic data generation and subsequent machine
learning and validation on the measurement data according to [2].

were randomly varied in a given range as found in litera-
ture [2], namely the work function, mobility, mobility field-
enhancement factor (Poole-Frenkel mobility model), doping
density, the relative permittivity of the intrinsic and doped ma-
terial and the series resistance. For each parameter variation, a
current-voltage curve and impedance spectroscopy simulation
[4] were performed contributing to the final set of 100’000
variations. The set was then split into training data that is
shown to the ML model [5], [6] for learning purposes and a
test data set used for validation of the ML model on ”unseen”
or new data. Once the performance on the test set is satisfying,
the measurements [7] are evaluated by the ML model resulting
in the underlying set of material parameters.

In Fig. 2, we compare the fitted and measured experiments
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for three different device thicknesses. The parameters found
are in agreement with the results of a traditional fitting
approach [3]. To further improve the results, the parameter set
could be used as a starting point for a traditional least-square
fitting optimizer. The same procedure as described above
was applied in [8] where we analyze the electroluminescence
image of a silicon solar cell with the aid of a convolutional
neural network and a 1+2D approach for the solar cell model.

Fig. 2. The current-voltage curves for all three thicknesses are shown,
additionally impedance measurements were also compared, for more details
see [2].

III. PHYSICS-INFORMED ML

The disadvantage of the above approach is that we only
profit form the physical knowledge in the numerical model to
generate the data. In the second step, the ML model has to re-
establish the underlying pattern. In order to enable successful
learning, a big enough data set is required resulting in a
huge amount of simulations and considerable computational
time. Thus, it would be desirable to integrate the physical
knowledge more directly. In physics-informed neural networks
(PINNs) [9], [10], the PDEs describing the model are built
into the loss function of the neural network. In the case of the
parameter extraction problem, we minimize a loss function
consisting of the norm of the difference of the measurements
and the neural network solution and the PDEs’ residuum of
the neural network solution. The total amount of parameters
to be determined consists of the weights and biases of the
neural network and the material parameters. After successful
training of the PINN, the PDEs are fulfilled and the material
parameters found. The training of the neural network, however,
can be challenging and is subject of current research [9], [11].
The advantage of PINNs is that they seamlessly integrate the
measurement data and we profit from automatic differentiation
as well as the strengths of deep neural networks and frame-
works [12]–[14].

IV. CONCLUSION

The extraction of material parameters from measurements
is crucial for device optimization and remains challenging.
Besides conventional fitting approaches, new methods from the
machine learning field are emerging and expanding into physi-
cal modelling. We presented an approach where the numerical
model is used for synthetic data generation and parameters
extraced by ML. The amount of data is reduced by combining
the model with the ML method leading to the second appraoch
known as PINNs. They integrate seamlessly noisy data and
take advantage of the deep learning infrastructure.
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