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Abstract—The role of nonparaxiality provides a fertile ground
for fabricating miniaturized nanoscale devices. In this work, we
examine the existence of nonparaxial solitons in a dimensionless
coupled nonlinear Helmholtz system, allowing the propagation
of ultra-broad nonparaxial pulses in a birefringent optical
waveguide. We analytically obtain a bright soltion solution by
using standard Hirota’s bilinearization method. Subsequently,
we numerically investigate the scattering dynamics of two bright
solitary waves by considering the obtained solution as the seed
solution.

Index Terms—Nonparaxial soliton, Hirota’s bilinear method,
split-step Fourier method.

I. INTRODUCTION

Over the past four decades, the formation of vector solitons
in birefringent optical media has been receiving widespread
attention in nonlinear optics, due to their unique properties
including stability and intriguing collision dynamics. Based on
the nature of weakly (or strongly) birefringent optical media,
it is possible to formulate coupled nonlinear Schorödinger
equations (CNLSEs) to govern the propagation of optical
pulses through a multimode fiber. The interaction dynamics
between these vector solitons have been responsible for the
development of many salient features, which include the
long-distance high-bit-rate communications and ultra-fast all-
optical switches [1]. The nature of the soliton interactions
can be classified into coherent interactions (which rely on
the relative phases of the interacting soliton at the input) and
incoherent interactions (wherein the nonlinear response of the
medium is decelerating than random fluctuations in the phase
of the interacting soliton). In practice, the nature of inelastic
collisions (on the ground of coupled versions of NLSE) has
exhibited intriguing features compared to the elastic collisions,
including shape-changing (alias energy sharing) collisions.

It is well known that this type of conventional models
can be derived mathematically using the slowly varying enve-
lope approximation (SVEA) or paraxial approximation from
Maxwell’s equations. While the SVEA has been extensively
used to obtain many mathematical models supporting different
nonlinear optical settings, including NLS-like equation, it fails
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to arrest the catastrophic collapse in higher dimensional sys-
tems as a consequence of losing the delicate balance between
linear and nonlinear effects [1], [2]. It could be feasible to
arrest the catastrophic collapse of higher dimensional NLS-
type systems either by applying higher-order nonlinearities,
such as quintic and saturable nonlinearities, or by invoking
the inherent nonparaxiality term, where it is possible to
ensure the stable propagation of optical pulses even in the
higher dimensional NLS-like equations without altering the
nonlinear profile. There exist a bunch of studies pertaining to
the propagation of nonparaxial solitons in various nonlinear
optical media [3] and rigorous investigation of elliptic waves
in the coupled version of nonparaxial systems [4]. In a
recent study, we have examined the existence and collision
dynamics of nonparaxial solitons by using standard analytical
and numerical techniques [5]. Despite there exit a number of
studies in the single componet NLH systems, obtaining general
solutions and analyzing their interaction dynamics in the two-
component systems have not been explored yet. Hence, in this
work, we first construct one bright solitary wave solution for
the system by employing standard Hirota method though the
system is a non-integrable one. We then carry out a detailed
dynamics of coherent interactions between two bright solitary
waves numerically.

II. THE MODEL

Let us first consider the generation of non-slowly varying
electric fields in a physical setting of birefringent optical fibers.
It can be specified by the following dimensionless coupled
equations

iΨj,z + ΛΨj,zz +
s

2
Ψj,tt + γ

(
|Ψj |2 + σ|Ψ3−j |2

)
Ψj = 0.

(1)

Here, Ψj , j = 1, 2, denote the orthogonally polarized compo-
nents of the optical modes and the parameters z, and t, re-
spectively, represent longitudinal and transverse co-ordinates.
The second parameter (Λ) in Eq. (1), is a nonparaxial param-
eter (NP) and it can vary from 10−2 to 10−4. The term s
indicates the value of group-velocity dispersion (GVD) and
in this work it is assigned to be operating in the anomalous
dispersion regime. The self- phase modulation and cross-phase
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Fig. 1. (Color online) Propagation of solitary waves for (a) first and (b)
second components, and (c) depicts the parametric plot between Λ and speed
of the two components and first and second components of solitary wave
versus nonparaxial parameter for the CNLH system. The parameters are α1 =
α∗
1 = β1 = β∗

1 = 1.5,Λ = 0.01, and γ = z = bR = −bI = 1.

modulation parameters are, respectively, symbolized through
the parameters γ and σ.

III. NONPARAXIAL SOLITONS AND THEIR INTERACTIONS

To obtain an analytical solution to the CNLH system,
we use Hirota’s standard bilinearization method. In order to
proceed with a regular approach, we assume σ = 1 and we
adopt the following rational solution form as Ψj(z, t, x) =
g(j)(z,t,x)
f(z,t,x) , j = 1, 2., where g is a complex function and f

is a real function. Substituting the above solution into Eq. (1),
and after some mathematical manipulation, one can obtain

Ψj = Aj e
iηI sech

(
η1R +

R

2

)
, j = 1, 2., (2)

where the parameters η1R, η1I ,, R, and Aj are expreesed

as art + brz, ait + biz, and 2 log
√

γ(α1α∗
1+β1β∗

1 )
(8Λb2r+4a2r) .

Here the aI and aR can be determined by√
−bi + Λ(b2r − b2i )±

√
(b2r + b2i )[1 + 2Λbi + Λ2(b2r + b2i )]

and − br(2Λbi+1)
2ai

, respectively. From Eq. (2), one can find
the phase and amplitude as ai(t + bi

ai
z) and v = ai

(−2Λbi−1) ,
respectively. Also, one can obtain the ideal soliton pulse
propagation in both the components of CNLH system as
shown in Figs. 1 (a) and (b), respectively. To elucidate the
impact of NP on the obtained bright solitary wave for the
proposed system (1), we reveal the intensity plots for the first
and second components of the bright solitary wave of the
system (1) as a function of the NP parameter Λ in Fig. 1
(c), wherein the stable propagation is witnessed. We then
numerically study the collision dynamics of bright solitons
of CNLH system numerically and use the analytical one
bright solitary wave solution (2) as an initial condition by
employing the split-step Fourier method based on Feit-Flock
algorithm.

When we consider the in-phase solitary waves (φ = 0), both
the solitary wave components demonstrate perfectly coherent
dynamics, where they display periodically repeated in-phase
interaction dynamics that produce oscillating bound solitary
waves as shown in Figs. 2 (a) and 2 (d). As the phase
shift is tuned to π/2, its repetition nature of periodic bound
solitons gets drastically decreased to almost two in both the
components for the same propagation length when compared
to the previous, see Figs. 2(b) and (e). The value of phase is

(a) |Ψ1|2 (b) |Ψ1|2

(c) |Ψ1|2 (d) |Ψ2|2

(e) |Ψ2|2 (f) |Ψ2|2

Fig. 2. Symmetric nature of interaction between two solitary waves of (1),
including the first components (left panel) and second component (right panel).
In this figure, the phase is rendered as φ = 0 in the top panel, φ = π/2
in the middle, and φ = π in the bottom panel, respectively. The remaining
parameters are: Λ = 0.001, γ = 1, ∆t0 = 1.5, b1r = b1i = 1, and
α1 = α∗

1 = β1 = β∗
1 = 1.97.

then increased to π, and it leads to an interesting interaction
nature of two solitons from coherent to perfect incoherent,
where the two individual solitons propagate in a zig-zag
manner. All these plots are drawn for the similar values of
α and β (α = β = 1.97).

IV. CONCLUSION

To conclude, we have constructed bright solitary wave solu-
tion for the CNLHE by using standard Hirota’s bilinearization
method. We have examined the impact of nonparaxiality on
the physical parameters, speed and amplitudes of solitary
waves and discussed in great detail. Following that we have
numerically demonstrated the scattering dynamics of bright
solitary waves, including two solitary waves, taking the ob-
tained analytical solution as a seed solution, and emphasized
their physical insights.
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