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Abstract—We mathematically derive a new nonlinear strain
model to simulate the conduction and valence bands in highly
bent 3D hexagonal nanowires with GaAs core and asymmetric
(Al↵In1�↵)As stressor. The model is based on a transformation of
the 1st Piola-Kirchhoff stress tensor and an appropriate energy
functional that captures the dynamics of the induced strain due
to lattice number mismatch. Finally, we solve PDE model via the
finite element method and use the strain profiles as input to a
k · p simulation tool to compute the energy bands.

I. INTRODUCTION

Nanowires are of great interest for many applications such
as optoelectronics, solar cells, and sensors. For instance,
nanowires may reduce the amount of silicon in solar cells
[1]. Here, we study the strain effects in drastically bent
hexaogonal zincblende nanowires due to a asymmetrically
lattice-mismatched core and stressor. Experiments show that
the strain heavily deforms the nanowires [2]. We propose a
non-linear PDE model that captures the experimentally shown
large finite-strain elastic deformation (up to 180�) and solve it
numerically via the finite element method. Finally, we compute
the band energy profiles on a cross section by using the k · p
approach implemented in the SPHInX software [4].

II. MODELLING STRAIN IN BENT NANOWIRES

We consider a heterostructured nanowire. The hexagonal
core region is composed of GaAs and the second region
consists of an (Al↵In1�↵)As alloy that covers the half side of
the structure and acts as a stressor, see Figure 1a. Due to the
lattice number mismatch between both materials, strain across
the interface leads to a large deformation (see Figure 1b).

(a) Cross section (b) Unbent/bent wire

Fig. 1. Hexagonal nanowire consisting of bulk GaAs (green region). The
nanowire is coated on one side (purple region) by a (Al↵In1�↵)As stressor.
The length of the nanowire is set to L = 2000 nm, the diameter of the core
is d = 50 nm, and the thickness of the stressor region is � = 6.5 nm.

Let ⌦̄ be the closure of the open and connected set ⌦ ⇢ R3

containing stressor and core. We call ⌦̄ the reference (La-
grangian) configuration (initial volume before deformation),

� : ⌦̄ ! R3 the deformation, and u : ⌦̄ ! R3 the displace-
ment of the reference configuration. That is, �(x) = x+u(x),
where x 2 ⌦̄ is the Lagrangian variable. We assume no
applied body or surface forces are acting on the nanowire; thus,
we can model the deformation by considering the following
equilibrium system in the reference configuration [6]

� div (T (x)) = 0, 8x 2 ⌦, (1a)
T (x)n = 0, 8x 2 @⌦, (1b)

where T the 1st Piola–Kirchhoff stress tensor, and n is the
unitary normal vector to @⌦. Considering an energy-based
approach, the tensor T can be implicitly defined by the stored
energy function cW : ⌦̄⇥M3

+ ! R as

T (x) =
@cW (x,F )

@F
, for all x 2 ⌦̄, (2)

where F := r� = I+ru is the deformation gradient. It can
be shown that the stored energy function is given by

cW (x,F ) = det(M)W (x,FM�1). (3)

The matrix M(x) = I + "0(x) describes the prestrain and
is the driving force of the deformation. It is is expressed in
terms of the equilibrium strain tensor "0, which depends on
the material’s lattice number. Hence, the equilibrium strain
is different in each region of the composite structure. We
define "0 := a(x)I , where a(x) = (l(x)� lref) /l(x) is
the relative error of the lattice number of each material and
lref denotes the volumetric average lattice number of the
nanowire. Finally, by assuming a non-linear Green–St-Venant
strain tensor " := (F TF � I)/2, we choose the function
W in (3) to be W (x,F ) = 1

8 (F
TF � I) : C(F TF � I),

where C 2 R3⇥3⇥3⇥3 is the fourth-order elasticity tensor.
This choice yields T (x) = F C " in the case that M(x) = I ,
i.e., all regions of the nanowire consist of the same material.
Now, using (2) and (3) we can rewrite equation (1a) the

� div

✓
1

1 + a(x)
F C "̃(u)

◆
= 0, (4)

where "̃(u) = "(x) � a(x) (1 + a(x)/2) I . The model (4)
is solved with Dirichlet boundary conditions on a fixed
side and homogeneous Neumann boundary conditions on
the other edges. We used the Julia finite element package
GradientRobustMultiPhysics.jl.
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Fig. 2. Strain components computed on a cross section at L = 1000 nm.

III. SIMULATION RESULTS FOR BAND STRUCTURES

We compute the band-edge energies on a cross section
of the nanowire perpendicular to the bending axis with an
eight-band k · p model for zincblende semiconductors [5].
We use the generalized multiband k · p module of the plane
wave-based SPHInX library, where we used the previously
computed strain profile as input. The parameters are in [3].

Figure 2 shows the six upper elements of the symmetric
strain tensor computed on a cross section at half the length of
a GaAs/(Al0.7In0.3)As nanowire. The diagonal elements are
dominant with "22 to be significantly larger in the stressor and
"11 ⇡ "22 in the core region. Thus, we conclude that the strain
resembles a uniaxial tensile strain in the stressor region and
biaxial compressive strain in the core region. Similar behavior
is observed for different alloy compositions of the stressor.

The strain data is then used as input in the k·p model to cal-
culate the band energies over the cross section. Figure 3 shows
the profiles of the conduction and valance band structures. To
better understand the band structure shift due to the strained
configuration, we derive the band edges across the middle
slice of the cross section. Figure 4 depicts the conduction and
valence bands along the y = 25 nm ray. The valence bands are
clearly separated and based on the strain profile the heavy hole
band has larger energy than the light holes, with the split-off
band being at the lowest energy level.

IV. SUMMARY AND OUTLOOK

We modelled and simulated non-linear strain in bent
hexagonal-type nanowires to study its influence on the band
edge energies. Notice that the valence edge bands do not cross;
this enables us to easily identify which band corresponds to
holes and is helpful for future drift-diffusion simulations which
in turn can be used for comparisons with experiments.
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(a) Conduction structure
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(b) Valence structure

Fig. 3. Surface plots of conduction band (top panel) and valence bands
(bottom panel) across the cross section plane.
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(a) Left: Conduction and valence bands. Right: Close-up of valence bands

(b) Valence bands vs k.

Fig. 4. Top panel: Band structures at the � point along the middle slice
in x-direction (i.e., at y = 25 nm). The gray area denotes the stressor
region. Bottom panel: Band structures with respect to the norm k of the
wave functions at the point (x, y) = (8 nm, 25 nm) (located in the core
region). The dotted vertical line corresponds to the wave function for which
the difference between the valence bands is minimum.
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