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Abstract—To reconstruct doping profiles via opto-electronic
techniques (e.g. LBIC and LPS), we formulate an inverse problem
based on the van Roosbroeck system. To solve it, we use neural
networks fed with data created from efficient implementations
of the forward model. We discuss errors of the reconstructed
doping profiles as well as their robustness with respect to noise.

I. INTRODUCTION

The non-destructive estimation of doping concentrations in
semiconductor devices is of paramount importance for many
applications such as crystal growth, temperature profile es-
timation, defect/inhomogeneity detection. Reconstructing the
doping leads to an inverse problem. A number of technologies
have been developed that allow the detection of doping inho-
mogeneities/variations via photovoltaic effects, i.e., illuminat-
ing the sample at specific positions with charge generating
sources such as a laser (represented by the generation term G
below), and detecting the resulting voltage or current at the
contacts, e.g., LPS [1] or LBIC [2]. To reconstruct the doping
profile, we generate synthetic data via the forward problem
(signals generated by a laser scan along the sample’s surface
for a given doping), and feed them to a deep neural network.
Finally, we test the robustness with respect to noise.

II. AN INVERSE PROBLEM FOR THE DOPING PROFILE

For a known doping concentration, the forward problem
is based on a variation of the van Roosbroeck drift-diffusion
model for semi-classical transport of free electrons and holes
due to a self-consistent electric field in a semiconductor. The
stationary model (for boundary conditions see [1]) is given by

−∇ · (εr∇ψ) = q
(
p− n+ND(x)−NA(x)

)
∓1

q
∇ · Jn,p = G(x)−R,

(1)

where q denotes the elementary charge, εr the dielectric
permittivity, G the generation due to the laser beam and
R = R(ψ,φn, φp) the recombination. However, we assume
that the doping concentration ND − NA takes an unknown
profile along the x axis which we want to reconstruct, i.e.,
we have to solve an inverse problem. The current densities
for electrons and holes are given by Jn = −qµnn∇φn and
Jp = −qµpp∇φp. The set of unknowns is expressed by the
electrostatic potential ψ and the quasi-Fermi potentials for
electrons φn and holes φp. The densities for electrons and

holes are given by n = Nc exp[(q(ψ−φn)−Ec)/(kBT ))] and
p = Nv exp[(q(φp−ψ)+Ev)/(kBT )]. Here, we have denoted
the conduction and valence band densities of states with Nc

and Nv , the Boltzmann constant with kB and the temperature
with T . Furthermore, Ec and Ev refer to the conduction and
valence band-edge energies, respectively, and µn and µp to the
mobilities. Due to the laser beam, we generate a measurable
potential difference. That is each doping profile corresponds
to a signal profile. From this relationship, we can generate a
large data sets using an efficient numerical code that solves
the forward problem [1] and feed these to our neural network.

III. IMPLEMENTATION

For every entry in our data set, we simulate the signal profile
generated by a scan of the laser beam on a grid of 1,200
equispaced points in the middle of the sample (varying only
in the x direction), for a known doping concentration. Every
entry in our training and test sets is thus generated with 1,200
two-dimensional simulations of the forward problem (each
corresponding to a different position of the laser beam). We
train our network to reconstruct the map from signal to doping
profile on the same grid. We build a total of 230,000 samples
by picking a random number of frequencies f in the range
{1, . . . , 5} and building the corresponding doping profile via:

ND+NA = C0

(
1+

f∑
i=1

αi sin

(
2π

λi
(x+Wf (x))

)
+Wr(x)

)
where α = (αi) are amplitudes randomly chosen in {0} ∪
[0.05, 0.2], C0 = 1.0 × 1016 cm−3 is a fixed average doping
value, and λi are wavelengths randomly chosen between
10µm and 1000µm. We use Wf and Wr as white noise
sources and split our model in two parts. For the first 30,000
samples, we set Wf = 0 and Wr = 0, while in the last
200,000 samples, we choose some random small values for
both parameters to include noise in our model.

We implemented a multilayer perceptron in PyTorch with
8 layers, made of a downsampler from 1,200 to 250, 2x250
Relu, 1x150 Relu, 2x100 Relu, 1x300 Relu and one upsampler
from 300 to 1,200. We performed three different tests: i)
(Case clean-clean) training and testing with clean data (30,000
samples in total, 22,500 for training and 7,500 for testing),
ii) (Case clean-noisy) testing the same model (trained with
the same data) that we had in the previous case on a noisy
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Fig. 1: The statistical distribution of the ℓ∞ relative errors for the test
case clean-clean. The orange line represents the average value, the
blue single-headed arrow the error of the sample shown in Figure 2a
which is in the 25th percentile and the red double–headed arrow the
error of the the sample close to the 75th percentile and is depicted
in Figure 2b.

dataset made of 7500 new samples, and iii) (Case noisy-noisy)
both training and testing with noisy data on 200,000 samples
(150,000 for training, 50,000 for testing).

IV. RESULTS

In Table I, we show statistical values that describe the
distribution of the absolute and relative errors for the doping
predictions of our model for the three different test cases
described above. The error distribution of the first case is
shown in Figure 1. Moreover, in Figure 2 we depict some
examples of reconstructed doping profiles. The grey line is
the original doping profile (only shown in x direction) and
the red/blue lines are the reconstructed doping values.

Relative error Absolute error (cm−3)

Average 3.5× 10−2 4.67× 1014

25-th percentile 9.19× 10−3 1.03× 1014

Median 1.52× 10−2 1.83× 1014

75-th percentile 3.05× 10−2 3.98× 1014

Relative error Absolute error (cm−3)

Average 1.04× 10−1 1.37× 1015

25-th percentile 3.55× 10−2 4.15× 1014

Median 7.14× 10−2 8.89× 1014

75-th percentile 1.5× 10−1 1.97× 1015

Relative error Absolute error (cm−3)

Average 4.5× 10−2 5.92× 1014

25-th percentile 1.83× 10−2 2.14× 1014

Median 2.89× 10−2 3.60× 1014

75-th percentile 4.78× 10−2 6.20× 1014

TABLE I: The ℓ∞ relative and absolute errors for the test cases clean-
clean (top), clean-noisy (mid), and noisy-noisy (bottom).

In Case clean-noisy (middle blocks in Table I), where we
used clean training and noisy input data sets, we observe
larger errors than in Case clean-clean. This is because we
are enlarging the space of the admissible dopings without
introducing new information to our model. To overcome this,
we increase the number of data samples (totally 200,000
samples) and also consider noisy training sets; see the bottom
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(a) 25th percentile of our distribution (case clean-clean)
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(c) 75th percentile of our distribution (case noisy-noisy)

Fig. 2: Some examples of predictions realized with our model (dashed
line: expected value, colored line: result of the model). Figure 2a, case
clean-clean, error within the 25th percentile, i.e. 25% of our samples
are more accurate. Figure 2b case clean-clean, 75th percentile.
Figure 2c, case noisy-noisy, 75 percentile.

block of Table I for the corresponding improvement of the
errors. We also report the doping profile reconstruction using
noisy training and input data in Figure 2 (c).

V. SUMMARY AND OUTLOOK

We presented an inverse model for the reconstruction of the
doping profile which we solved via a machine learning tech-
nique. This is relevant for many applications such as crystal
growth, temperature profile estimation, defect/inhomogeneity
detection. We discussed the approximation quality of our
method and showed robustness with respect to noise.
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