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Abstract—We present an algorithm for calculating steady
states in the dynamic PDE model for SLs admitting gain com-
pression, spatial hole burning, and multilevel carrier rate equa-
tions. Presented example simulations rely on 1(time)+1(space)-
dimensional traveling-wave- and Lang-Kobayashi-type models.

Edge-emitting (EE) semiconductor lasers (SLs) are used
in many modern applications requiring specific dynamic or
stationary emission characteristics. Modeling and analysis of
nonlinear dynamics and calculation of stable and unstable
steady states are crucial for understanding SLs [1], [2], pre-
dicting lasing characteristics [3], or designing SLs for specific
purposes [4]. The complexity of dynamic SL models ranges
from 1(time)+3(space)-dimensional (1+3-D) PDEs to simple
rate equations. Complex models can give a deep insight into
the spatio-temporal dynamics but rely on many not very well-
known parameters and are computationally expensive. On the
other hand, 1+1-D PDE and even simpler DDE/ODE models
maybe lack quantitative precision but can be quickly resolved
on standard computers, admit various analytic and semianalytic
methods for their analysis, and can be successfully used for
comprehensive parameter studies, qualitative analysis, and,
thus, simulation and design of novel device concepts.

We seek to calculate and compare steady states in simple
DDE and 1+1-D PDE models used to simulate SLs at well-
above-threshold regimes. These models mimic dynamics of
the complex optical field E and real carrier density N in
m “active” sections Sa of the multisection device. Typically,
the models for optically uninjected SL can be written as a
rotationally-invariant w.r.t. E system

d

dt
E = H(β(N, εP ))E,

d

dt
N = εN (I,N, εP,E), (1)

where I is the pump current and the field power P is a real
function of E. In DDE and more advanced ODE models, E(t)
is defined by a single or several complex components, whereas
the m′-dimensional real vector function N(t) represents pos-
sibly multilevel carrier dynamics in different active sections.
In the 1+1-D PDE model case, E(z, t) is a (vector-) function
determining field distribution along the entire SL device cav-
ity. The vector function N can also depend on longitudinal
coordinate z within corresponding Sa. In simpler approaches,
one can neglect spatial hole burning and consider sectionally-
uniform components of N and section-wise constant β and
P . In this case, the carrier rate equations for ODE/DDE and
PDE models are nearly identical. The operator H governs the
optical fields and accounts for their delay or spatial derivatives
and boundary/interface conditions in DDE and PDE cases,
respectively. N is a real vector function with m′-components

in both approaches. A (typically small) parameter ε represents
the ratio of the photon and carrier lifetimes and indicates a
slow-fast nature of the SL model, widely exploited for model
analysis [1]. The gain compression factor ε� 1, changes of β
are slow, and the spectra of H(β) calculated at some instant
β provides useful information about dynamics of optical fields
[5], [4]. Probably the most prominent representatives of DDE
models for SLs are Lang-Kobayashi (LK)-type systems, origi-
nally used for lasers with delayed feedback. Different versions
of the 1+1-D PDE traveling wave (TW) model [5] are used
for simulation and analysis of spatio-temporal dynamics in an
even larger variety of multisection SLs.

Each steady (or continuous wave, cw) state is defined by
time-independent β̄, P̄ , complex vector Ē, real vector N̄ , and
real optical frequency ω̄. To find cw states, one has to insert
the ansatz (Ēeiω̄t, N̄) into Eq. (1) and resolve the resulting
system w.r.t. Ē, N̄ , and ω̄. This procedure for ODE/DDE
models, together with a rotational-invariance condition, leads
to a system of algebraic equations whose roots are defining all
stable and unstable cw states. In LK-type models, these states
are known as external cavity modes, ECMs. The situation in
the PDE model case is more tricky. Here, after the elimination
of the time variable, we still deal with the system of algebro-
differential equations

iω̄Θ̄(z) = H(β(N̄ , εP ))Θ̄(z), (2)

where complex vector-eigenfunction Θ̄ provides a longitudinal
distribution of the field amplitude Ē, scaled by a complex
factor f̄ . In the TW-modeling case [5] considered in the rest
of this work, the initial and end values Θ0 and ΘL are (up to
scaling factors) determined by the field reflection conditions
at the cavity edges, z = 0 and z = L. For any fixed β(z) and
ω, Eq. (2) is mainly determined by a couple of linear w.r.t. Θ
first-order ODEs, which, at least for a piece-wise constant β,
can be resolved using transfer matrices M . Thus, Θ(z) itself
can be understood as a function of β(z) and ω:

Θ(z) = M(β, ω)Θ0 = FΘ(z;β, ω). (3)

To match the reflecting conditions at the other end of the
device, z = L, i.e., to satisfy the steady-state condition, one
should find β̄ and ω̄ solving a complex characteristic equation
generated by the transfer matrix over the whole cavity:

FΘ(L; β̄, ω̄) ∝ ΘL ⇒ χ(β̄, ω̄) = 0, (4)

where ∝ denotes proportionality of two vectors, and β̄ is a
function of, in general, z-dependent N̄ and P̄ :

β̄(z) = β(N̄ , εP̄ ). (5)
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P̄ (z) = P (z′, z′′) represents the power of the field function
Ē = f̄Θ̄ averaged over the interval [z′, z′′] that contains z. In
the simple TW model with sectionally-averaged N , β, and P ,
these intervals correspond to each of m sections Sa. In general
case, z′ = z′′ = z, and P̄ is the field power at each z of these
Sa. For estimation of P (z′, z′′) it is enough to know Θ̄(z′),
Θ̄(z′′), ω̄, and |f̄ |2. Thus, P̄ (z) can be written as

P̄ (z)|z∈[z′z′′] = P (|f̄ |2, β̄, ω̄; z′, z′′). (6)

Finally, m′ real carrier rate equations in (1) along with the
rotational invariance implies further m′ real relations,

N (I, N̄ , εP̄ , |f̄ |FΘ(z; β̄, ω̄)) = 0. (7)

By inserting β̄ from Eq. (5) into Eqs. (4), (6), and (7), we
get a system of equations determining ω̄, |f̄ |, P̄ , and N̄ . For
simple models relying on sectionally averaged N , P , and β,
this system is equivalent to 2 +m+m′ real equations relating
the same number of real factors ω̄, |f̄ |, P , and N̄ . In the
general case, β̄, P̄ , and N̄ within each Sa are z-dependent, and
Eqs. (5), (6), (7) are functional relations. Thus, we subdivide
all Sa into mD smaller subsections (e.g., 200 steps pro 1 mm-
long all-active SL) and assume that N , β, and P are constant
within each subsection. If N̄ is defined by m′

D real numbers,
the system to be considered is equivalent to 2 + mD + m′

D
real equations and relates the same number of real variables.
For the numerical solution [6] of this system, we use Newton’s
iterations and the Homotopy method.

The algorithm for location of the cw states in general TW
model was developed during the recent study of SL emission’s
linewidth in external-cavity diode lasers [3]. In many applica-
tions, however, simplified TW or even more simple DDE (such
as LK-) models are sufficient. When spatial hole burning and
gain compression are not important (ε = 0), and only a single
carrier rate equation per active section is used, the steady-
state defining system is reduced to one complex and m real
equations (4), (7), together defining real m-component vector
N̄ and real factors ω̄ and |f̄ |2. Fig. 1 illustrating cw state

(b)(a)

Fig. 1. Steady states in a FP laser with optical feedback in relative frequency-
carrier density domain. (a): States for several feedback levels κ and arbitrary
phase ϕ close to two resonances of the solitary SL. Solid and thin dashed: TW
and LK models, respectively. (b): Same states for several κ ≤ 0.1 (solid) and
fixed ϕ but arbitrary κ (dotted) in vicinity of the solitary SL resonance. Thick
dots at κ = 0.01 curves: cw states for ϕ = 0. Black dash-dotted: saddle-node
bifurcation. Thick black bullet at κ = κEP ≈ 3.8 · 10−4: exceptional point.

calculations in the simplest nontrivial device, a Fabry-Perot
(FP) laser (m = 1) with optical feedback from the external
mirror, uses a simple TW and corresponding LK models.
Steady states are defined by real-valued triples (ω̄, |f̄ |2, N̄)
(|f̄ | ≡ Ē in the LK case). Let κeiϕ be the ratio of emitted and
back-reflected delayed field amplitude just outside the front
facet (κ and ϕ: feedback level and phase shift). By setting
κ = 0 (vanishing feedback) and resolving Eq. (4) (which is

a standard roundtrip condition for FP lasers), we locate an
infinite number of pairs (ω̄s, N̄s) determining steady states of
the solitary laser with the same N̄s and (2π/τFP )-separation
of adjacent state frequencies (τFP : field roundtrip time in the
FP diode). Fig. 1 shows the surrounding of a pair of such
solitary FP laser resonances. δN = N̄ − N̄s and δω = ω̄− ω̄s,
denoted on x- and y-axes, are carrier densities and frequencies
relative to one of the FP resonances. For FP laser, Eq. (4) splits
into two real equations [2], [5],

χ1(β̄, ω̄;κ) = 0, χ2(β̄, ω̄;ϕ) = 0. (8)

For fixed κ, the first equation defines by ϕ-parametrized curves
in the (ω̄, N̄) domain; see colored solid curves in Fig. 1.
Parameter ϕ corresponding to each point of such curve is
determined by the second equation in (8). With an increase of
κ, these fixed κ level curves, initially surrounding all solitary
FP resonances, expand until they touch each other at a critical
κc =

√
Rf ≈ 0.224 (RF = 0.05: front facet reflection) and

split afterward, forming a continuous curve at lower values
of N̄ , as shown in Fig. 1(a) for κ ≥ 0.3. Similarly, for
each fixed ϕ, function χ2 provides κ-parametrized curves
(dotted in Fig. 1(b)). κ for each point on these curves is
determined χ1. Minimal but still positive κ on each but one
fixed-ϕ curve occurs on the dash-dotted line, indicating the
creation/annihilation of a saddle- and node-type pair of the cw
states. A single fixed-ϕ curve terminates at the origin, where
κ vanishes. Intersections of the fixed κ and fixed φ curves
define cw states (ECMs in LK approach). A subset of such
states calculated [6] for a TW model with included material
gain dispersion [5] for κ = 0.1 and ϕ = 0 is shown by black
dots on the orange curve in Fig. 1(b). In more complex lasers
(DBR or DFB SLs, for example) representations of Fig. 1,
estimation of the critical κc at which initially closed fixed-κ
loops are splitting, or mode degeneracy or exceptional points
(EP) where χ(ω, N̄) = ∂ωχ(ω, N̄) = 0 require numerical
calculations [6].

In conclusion, we discussed challenges arising in the cal-
culation of (stable and unstable) cw states in the TW model
of SLs. In the numerical example, we compared cw states in
TW and LK models for the FP laser with optical feedback.
Constructed using a first-order approximation of χ(β, ω) at the
solitary SL resonance [7], the LK model is in good agreement
with the TW model when feedback is small, and a single-mode
operation of the solitary SL is pronounced. For multimode SLs
or SLs with κ2 exceeding the front facet reflectivity, this good
agreement is lost, and the usage of the LK model becomes
questionable. Even though adding higher-order feedback terms
with multiple delays improves the approximation of the fixed-κ
loops, this works only up to κ ≤ κc.
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