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Abstract—We investigate the existence and stability of moving
solitons a semilinear directional coupler where one core has
cubic-quintic nonlinearity and the other core is linear with
uniform Bragg grating.

Index Terms—Moving Bragg solitons; Bragg grating; Cubic-
quintic nonlinearity;

I. INTRODUCTION

Fiber Bragg gratings (FBGs) are widely known to exhibit
strong effective dispersion in a medium, up to 106 times
higher than the chromatic dispersion of silica fiber [1]. When
this strong dispersion is counterbalanced by the third-order
nonlinearity, soliton-like structures form in the system [2–4]
which are termed as “Bragg solitons.” Theoretically, Bragg
solitons may possess any velocity from zero to the speed
of light in the medium. Experimentally, Bragg solitons with
speeds as low as 16% of the speed of light in vacuum have
been observed [5]. The analysis of the characteristics of Bragg
solitons has received much interest in recent years due to
their potential applications in signal processing, switching,
buffering and logic operations [6–8].

Coupling between modes in nonlinear optical systems such
as nonlinear couplers with dissimilar cores gives rise to rich
nonlinear dynamics and switching characteristics [9–11]. In
this work, we analyze the existence and stability of moving
Bragg solitons in a semilinear coupler where one core has
qubic-quintic nonlinearity and the other core is linear with a
uniform FBG.

II. THE MODEL

The propagation of light in a coupler made of a nonlinear
core with cubic-quintic nonlinearity and a linear core with a
uniform Bragg grating is described by the the following set of
normalized equations
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Fig. 1. Linear spectra for different velocities at λ = 0.2 and c = 0.2.

Here, u and v are the forward- and backward-propagating
waves in the nonlinear core (core-1) while φ and ψ are their
counterparts in the linear core with FBG (core-2). q > 0
represents the strength of the quintic nonlinearity and λ > 0 is
the coupling coefficient between forward and backward-waves
in the linear core. The coefficient of mutual coupling between
the two cores has been normalized to 1. c denotes the group
velocity mismatch between the cores and the group velocity
in core-1 has been set to 1.

To determine the spectrum within which solitons may exist,
Eqs. (1) are first transformed to the moving coordinates using
the transformation {X,T} = {x− σt, t}, where σ represents
the normalized soliton velocity. This leads to the following
system of equations:
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The linear spectrum of the system is obtained by substituting
u, v, φ, ψ ∼ ei(kX−ΩT ) into the linearized form of Eqs. (2),
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Fig. 2. Propagation of solitons with λ = 0.2, c = 0.2 and σ = 0.2 showing:
(a) stable Type 1 soliton for Ω = 1.09, q = 0.26; (b) unstable Type 2 soliton
for Ω = −1.05, q = 0.7.

where Ω is the frequency of the moving frame and k is the
wavenumber. As is shown in Fig. 1, the spectrum generally
consists of three disjoint bandgaps of which only the upper and
lower bandgaps contain soliton solutions. Additionally, in the
upper and lower bandgaps, two disjoint families of solitons are
found, namely Type 1 and Type 2, which differ in amplitude
and phase.

As for moving soliton solutions, Eqs. (2) do not have
analytical solutions and they must be solved by numerical
methods.

III. PROPAGATION AND STABILITY ANALYSIS

Examples of the propagation of stable and unstable solitons
are shown in Fig. 2 and a summary of the stability analysis
is presented in Fig. 3, for fixed values λ, c and σ, on the
(q,Ω) plane. Stable solitons are only found in the Type 1
family, in both the upper and lower bandgaps while all Type
2 solitons are found to be unstable. Also, there exist regions
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Fig. 3. Stability diagram for moving soliton corresponding to σ = 0.2,
λ = 0.2 and c = 0.2 on the (q,Ω) plane.

in the upper and lower bandgaps (see diagonal lines in Fig. 3)
where solitons do not exist.
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