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Abstract—Organic semiconductor devices promise cost-
efficient processability at low temperatures, but the usually
amorphous materials suffer from low charge carrier mobility.
The search for high mobility organic semiconductor materials
has thrived data science and Machine Learning approaches to
screen the vast amount of possible organic materials. We present
a multiscale simulation model based on machine learned transfer
integrals to compute the charge carrier mobility in organic thin
films.

I. INTRODUCTION

Organic semiconductor materials are used in a variety of
(opto-)electronic devices such as organic field effect transistors
(OFETs) or organic solar cells (OPVs) [1], [2]. The device per-
formance directly depends on the underlying semiconductor
morphology [3]. Therefore, the study of structure—property
relations in organic semiconductor materials is an important
factor for the development of such devices. In particular, the
relation between morphology, electronic structure, and charge
transport is of interest [4], [5]. Modeling charge transport in or-
ganic semiconductor devices requires a multiscale simulation
approach, where classical Molecular Dynamics (MD) is used
to create molecular structures, kinetic Monte Carlo (kMC)
methods are used to capture charge carrier trajectories, and
Quantum Chemistry (QC) methods are used to compute the
electronic structure of the organic molecules [6], [7]. Because
of the high computational cost of calculating the electronic
structure of amorphous organic materials, Machine Learning
(ML) approaches have been proposed to efficiently predict QC
properties [8], [9], [10].

One important step towards a successful ML model is to
find a suitable representation of the molecular structure. In
our previous work we developed a ML model based on Kernel
Ridge Regression (KRR) to predict transfer integrals between
small organic molecules and study the impact of different
molecular representations on the models prediction accuracy
[11], [12]. We showed that using a few geometric features
tailored to the particular molecule under investigation are
enough to reach good prediction accuracy. But with such a
simple geometric representation, the ML model is not capable
of distinguishing different molecules and the model therefore
is not generalizable for a larger class of molecules. By using
Coulomb Matrix based features, we were able to further
improve the prediction accuracy and generalize the model for

multiple small molecules. In a different study, we utilized
a graph neural network (GNN) based ML model to predict
orbital energies of 62 000 molecules [13]. Using a graph,
where the nodes correspond to atoms and the edges to bonds,
is a natural choice to represent a molecule.

In this project, we extend our multiscale simulation frame-
work for charge transport in organic materials [12]. In order
to generalize the ML model for a larger class of molecules,
we utilize a GNN based model.

II. MULTISCALE SIMULATION MODEL

In this section we summarize our multiscale simulation
model. A schematic overview of the model is depicted in fig. 1.

The first step is to create realistic organic morphologies
using classical Molecular Dynamics (MD). We deposit organic
molecules on a frozen slab of crystalline SiO2. While anneal-
ing the structure at 300K we take snapshots of the molecular
structure. We extract neighboring molecule pairs from the
morphology using the Voronoi tesselation. For these dimers,
we compute the transfer integral using the dimer projection
method (DIPRO) [14]. The needed molecular orbital expansion
coefficients, overlap matrix, and orbital energies are computed
with the Density Functional Theory (DFT) tool CP2K [15].
With this method we generate a training set of about 2000
data points per organic molecule.

In our previous work we utilized KRR models to predict
transfer integrals between organic molecules [12]. One prob-
lem with this ML algorithm is the need for a fixed-size feature
vector. A generalization for arbitrary sized molecules is pos-
sible by setting the feature vector size according to the largest
molecule and using zero-padding for smaller molecules. The
drawback of this method is a huge waste of computation time
and storage. A graph can naturally represent molecules of any
size and is therefore advantageous for a generalized ML model
[13].

Graphs provide node and edge features. For the node
features, we choose the atom number and for the edge features
the Coulomb Matrix elements we previously used in our
KRR models. A GNN is used to extract molecular features
of arbitrarily sized molecules. The output layer of the GNN
is used as an input to a Feed-Forward Neural Network that
predicts the transfer integral. This framework is chosen to have
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Fig. 1. Schematic of a multiscale simulation approach to compute charge transport in organic thin films. Molecular Dynamics (MD) is used to create realistic
morphologies. Molecule pairs are extracted from the obtained structures and transfer integrals are computed using Quantum Chemistry (QC) calculations. The
obtained data are used to train a Machine Learning (ML) model using a Graph Neural Network (GNN). The charge carrier mobility is obtained from kinetic
Monte Carlo (kMC) simulations using the MD morphologies and predicted transfer integrals as its input values.

the possibility to add other molecule representations to the
Neural Network as shown in [13].

To compute the charge carrier mobility in an organic thin
film we use the kinetic Monte Carlo method. The morphology
is taken from the MD simulation and the molecules are
reduced to their center of mass position. The charge hopping
rates between these positions is calculated using Marcus theory
[16]. The transfer integrals needed as an input for the Marcus
rate equation are predicted by the ML model. By tracking the
charge carrier movement we obtain the charge carrier mobility.

III. OUTLOOK

We will investigate the prediction accuracy of GNN based
ML models for the prediction of transfer integrals depending
on network size, number of molecules in the training data and
distribution of the training data. As a base case, we will use the
Coulomb Matrix elements as edge features and compare the
GNN performance to our previous KRR study. In a further
step, we will investigate different molecular representations
and their impact on the prediction accuracy.
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