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Abstract- We present a general approach for numerical mode 

analysis of the multilayer slab waveguides using the Transfer 

Matrix Method (TMM) instead of the Finite Difference Frequency 

Domain (FDFD) method. TMM consists of working through the 

device one layer at a time and calculating an overall transfer 

matrix. Using the scattering matrix technique, we develop the 

proposed method for multilayer structures. We find waveguide 

modes for both passive and active slabs upon determinant analysis 

of the scattering matrix of the slab. Our proposed technique is 

more efficient and faster than other numerical methods.   

 

I. INTRODUCTION 

Challenges in simulation of the electromagnetic devices have 

been reached to the design of time-variant (active) structures 

with various applications in nanophotonic and metasurface 

structures. 

Here we present a technique to calculate slab waveguides 

modes using Transfer Matrix Method (TMM) semi-analytical 

algorithm [1] in which a device is represented as a stack of 

layers that are uniform (passive) or time-variant (active) in the 

longitudinal direction. Scattering matrices are calculated for 

each layer and are combined into a single overall matrix that 

describes propagation through the entire device. Free space 

gaps with zero thicknesses are inserted between the layers and 

the scattering matrices are made to relate fields that exist 

outside the layers, but directly on their boundaries [2]. Finally, 

we extract the modes in the slab waveguide structure using 

scattering matrix for both passive and active configurations.   

 

II. PASSIVE SLAB WAVEGUIDE 
 

First, we decide to analyze the guided modes in the waveguide 

of Fig. 1 sandwiched between two clads. The slab has a high 

refractive index of 2 between two identical clads with lower 

index of 1. The thicknesses of slab and each of the clads have 

been assumed equal to 3𝜆0  and 5𝜆0 , respectively. Also, the 

incident wavelength (𝜆0) is assumed to be 1µm. The electric 

wave propagates in the slab along x- direction and the 

polarization along z- direction will be as 𝐸⃗ (𝑥, 𝑦, 𝑧) =

𝐴 (𝑧)𝑒−𝑖𝛽𝑥 , where 𝐴 (𝑧) is the amplitude profile and 𝛽  is the 

propagation constant. In electromagnetic formulations, because 

of the structural uniformity, we assume 
𝜕

𝜕𝑦
= 0 and 

𝜕

𝜕𝑥
= −𝑗𝛽. 

Assuming 𝛽 = 𝑘0𝑛𝑒𝑓𝑓 from ray tracing of propagation wave, 

we can reach the following equation: 
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By solving the above equation using finite difference frequency 

domain (FDFD) method [3], five first eigen-values can be 

reached as effective refractive indices of the guided modes 

which are travelling along x- direction as shown in Fig. 2. Blue 

lines are eigen-vectors which depict the modes.   

 
Fig. 1: Propagation along passive slab waveguide. The structure is consisting 
of high refractive index layer which is sandwiched between two clads with 

lower refractive indices. 

 

Above analysis using FDFD method can be performed using 

TMM method but in different manner. In FDFD, the eigen-

value problem calculates the modes directly, including the 

propagation constant as the eigen-value. Using TMM, we need 

to guess the value of propagation constant, calculate the 

scattering matrix and determine whether its determinant is zero. 

All propagation constants that cause the determinant of the 

global scattering matrix to be zero are related to guided modes. 

Here, we start TMM for the slab waveguide of Fig. 1 and try to 

sweep a range of values for 𝑛𝑒𝑓𝑓  and then calculate the 

determinant of the scattering matrix which is resulted from 

these refractive indices. Calculation of modes reduces to 

essentially a root-finding algorithm to determine the specific 

values of 𝑛𝑒𝑓𝑓. To implement TMM, we assume the incident 

wavevector (𝑘inc) tackles with the first layer by elevation (𝜃) 

and azimuth ( 𝜑 ) angles and consists of three directional 

wavevectors as: 
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where ninc and 𝑘0 (=
𝜔𝑖𝑛𝑐

𝑐
)  are the refractive index of the 

incident environment and free space wavenumber, respectively. 

In our simulation codes, we have set 𝑘𝑖𝑛𝑐,𝑥 = 𝑘0𝑛𝑒𝑓𝑓  and 

𝑘𝑖𝑛𝑐,𝑦 = 𝑘𝑖𝑛𝑐,𝑧 = 0. Also, we have considered the least-squares 

problem to obtain min(∑|𝑓(𝑥𝑖) − 𝑦𝑖|
2)  based on the well-

known Levenberg–Marquardt algorithm (LMA), where 𝑓(𝑥𝑖) 

is a nonlinear function like determinant of the scattering matrix 

obtained from the TMM algorithm and 𝑦𝑖  is the desired result 

(obtained by setting the determinant equal to zero) [4]. We can 

perform root finding using cultural algorithm (CA) instead of 

LMA in structures with large number of layers [5]. The 

obtained results show that, TMM is pretty close to exact and 

faster than FDFD to find guided modes of the slab waveguide. 

We suggest the mode calculation using TMM, since the finite 

difference method tries to solve a very large amount of space 

outside the slab which consumes more memory and decreases 

the speed of calculations, especially for large and multilayer 

structures.  

 
Fig. 2: First five eigen-vectors and eigen-values of the slab waveguide that 
show the guided modes of the travelling wave along propagation direction of x. 

The refractive indices of slab waveguide and identical clads are 2 and 1, 

respectively. All structure has a unique permeability.   

 

III. ACTIVE SLAB WAVEGUIDE  

 

At this stage, we consider Fig. 1 with time-varying waveguide 

in which the time-modulated index of the core is presumed to 

have a sinusoidal behavior as 𝑛(𝑡) = 𝑛𝑠[1 + 𝛿 cos (2𝜋𝑓𝑚𝑡)], 
such that the static refractive index 𝑛𝑠 and modulation depth 𝛿 

have the values of 2 and 0.01, respectively. By default, the 

relative magnetic permeability 𝜇𝑟 is assumed to be 1 and the 

excitation wavelength is considered equal to 1 𝜇m. Also, the 

modulation frequency is set to ten percent of the incident 

frequency (𝑓𝑚 = 0.1 𝑓0). We take cosine function instead of 

sine, since the cosine function has a peak in the core area and 

therefore the overall refractive index of the core material 

(waveguide) remains higher than both clads so that the 

condition of slab waveguide is not violated. The thicknesses of 

the slab and each of the clads are the same as section II.  

Here, we set 𝑘𝑖𝑛𝑐,𝑥 = 𝑐𝑘0𝑛𝑒𝑓𝑓  from Eq. (2) and 𝑘𝑖𝑛𝑐,𝑦 =

𝑘𝑖𝑛𝑐,𝑧 = 0. Also, we assume the least-squares problem to obtain 

the zero point of the scattering matrix determinant obtained 

from the time-varying TMM (TTMM) simulation [6]. In the 

TTMM algorithm, we define time periodicity as 𝑇 = 2𝜋/Ω, 

where Ω = 2π 𝑓𝑚  is the modulation frequency with the 

frequency of 𝑓𝑚 . Considering temporal variations, the 

periodicity is implemented to relative permittivity as 𝜀𝑟(𝑡 +
𝑢𝑇) = 𝜀𝑟(𝑡). Also, angular frequency is expanded as 𝜔(𝑢) =

𝜔𝑖𝑛𝑐 −
2𝜋

𝑇
𝑢 with integer number of u. 

In Table I, we have listed the unique modes. As seen in this 

table, the unique modes become fewer with increasing the 

temporal harmonics indices.  

 
TABLE I 

Number of temporal 

harmonics (u) 
neff 

3 
2, 1.99, 1.97, 1.9, 1.86, 1.84, 1.83, 1.8, 1.79, 1.77, 

1.75, 1.74, 1.68, 1.65, 1.64, 1.63 

5 
1.97, 1.9, 1.79, 1.77, 1.76, 1.75, 1.74, 1.64, 

1.63,1.61 

7 1.77, 1.74, 1.63 

9 1.74, 1.63 

11 1.74, 1.63 

 

IV. CONCLUSION 

 

In summary, with increasing the convergence of the purposed 

method in active state, precise modes could be calculated which 

their number is less than the modes analyzed in the passive slab 

waveguide. This can be related to the temporal behavior 

(variation) of the refractive index in the time-varying media 

which causes the number of propagation modes to be limited. 

The modulation frequency has the major effect on the 

amplitudes of effective modes in our analysis, so that we can 

increase/decrease or change the amplitudes of modes in active 

state (time-varying) versus various values of 𝑓𝑚. These modes 

that exhibit unusual dispersion relation may find applications in 

optical mixers, terahertz sources, and other optical devices [7]. 
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