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Abstract—The tight binding (TB) approach represents a good
trade-off between accuracy and computational burden. For
this reason, it is widely used for device simulations. However,
a proper description of a physical system by means of TB
requires an accurate parameterization of the Hamiltonian matrix
elements (HME), that is usually done by fitting over suitable
properties that can be measured or computed with first-principles
approaches. We show that the particle swarm optimization
algorithm is a powerful tool for the parameterization of the
TB HME, using the density functional theory band dispersions
of bulk reference materials as a target. We discuss the results
obtained for bulk MAPbI3 perovskite in its high temperature
cubic phase.

I. INTRODUCTION

Tight binding (TB) [1] is widely used for device sim-
ulations, since it allows to describe structures composed
of millions of atoms, combining numerical efficiency with
reasonably accurate results. In the TB approach, the wave
function is expressed as a linear combination of localized
atomic orbitals, that is a natural choice when we want to
describe systems with atomic resolution where transport bands
are formed by the interaction of atomic orbitals. However,
a good representation of a physical system by means of a
TB approach requires an accurate parameterization of the
Hamiltonian matrix elements (HME). This is usually done
by fitting over suitable properties of the system that can be
measured by experiments, in this case we refer to empirical
TB, or computed with more accurate approaches, such as
density functional theory (DFT). Ab-initio methods based on
DFT do not require adjustable input parameters to perform
the simulations and offer an accurate atomistic representation
of the system under investigation. Band dispersions of bulk
reference materials are one of the typical targets in these
fittings, useful for electronic simulations.

We propose the application of the particle swarm optimiza-
tion algorithm (PSO) to the parameterization of the TB HME
using the DFT band dispersion as a target. We show and
discuss the results obtained for bulk MAPbI3 perovskite in
its high temperature cubic phase.

II. COMPUTATIONAL APPROACH

The PSO was originally designed and developed by Eberhart
and Kennedy [2]. In PSO, each particle is treated as a point in
a D-dimensional space and explores the search area according

to its own search experience and its companions’ search
experience. The performance of each particle is measured
according to a predefined cost function fcost, which is related
to the problem to be solved. The ith particle is represented
as xi = (xi,1, ...xi,d...xi,D). The best previous position (the
position giving the minimum fcost value) of the ith particle
is recorded and represented as pi = (pi,1, ...pi,d...pi,D). The
index of the best particle among all the particles in the
population is represented by the symbol s. The rate of the
position change (velocity) for particle i is represented as
vi = (vi,1...vi,d...vi,D). The particles explore the search space
according to the following equations:

vi,d = a ∗ vi,d + b1 ∗ r1(pi,d −xi,d)+ b2 ∗ r2(ps,d −xi,d) (1)

xi,d = xi,d + vi,d (2)

where b1 and b2 are two positive constants, r1 and r2 are
two random numbers in the range [0,1], and a is the inertia
weight. Equation 1 is used to calculate the particle’s new
velocity according to its previous velocity (first term a ∗ vi,d)
and the distances of its current position from its own best
experience (second term b1 ∗ r1(pi,d − xi,d)) and the group’s
best experience (third term b2 ∗ r2(ps,d − xi,d)). Then the
particle flies toward a new position according to equation
2. The inertia weight a is employed to control the balance
between global (wide-ranging) and local (nearby) exploration
abilities of the particles. A larger inertia weight facilitates
global exploration (searching new areas) while a smaller
inertia weight tends to facilitate local exploration to fine-tune
the current search area.

Here, the xi,d positions represent the possible values of the
TB HME, that determine the eigenvalues εTB

n,k for the n band
index at the k reciprocal space point. The target DFT eigenval-
ues εDFT

n,k are calculated at the general gradient approximation
(GGA) level, using full-relativistic projector-augmented-wave
Perdew-Burke-Ernzerhof [3] pseudo-potentials. The cost func-
tion is defined as fcost =

∑
n,k wn,k(ε

DFT
n,k − εTB

n,k)
2, where

wn,k are properly determined weights.

III. RESULTS AND DISCUSSION

We show the results obtained for bulk MAPbI3 perovskite in
its high temperature cubic phase. The target band structure of
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TABLE I
COST FUNCTION VALUES OBTAINED FOR DIFFERENT SETS OF THE

ALGORITHM PARAMETERS a, b1 AND b2 . IN ALL CASES, THE
OPTIMIZATION IS PERFORMED USING 45 PARTICLES AND THE MAXIMUM

NUMBER OF PSO ITERATIONS IS SET TO 100.

a b1 b2 fcost

0.1 1 1 0.39
0.3 1 1 0.13
0.5 1 1 0.035

0.5 0.5 1 0.033
0.5 1.5 1 0.034

0.5 1 0.5 0.043
0.5 1 1.5 0.031
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Fig. 1. Cost function values obtained for different sets of the algorithm
parameters a, b1 and b2. In panel (a), the parameters b1 and b2 are set to 1.
In panel (b), the parameter a is set to 0.5. In all cases, the optimization is
performed using 45 particles and the maximum number of PSO iterations is
set to 100.

the material is calculated at the DFT-GGA level of approx-
imation using the QuantumEspresso package [4], adjusting
the band gap energy to its experimental value [5]. The TB
calculations are performed employing the TiberCAD software
[6]. The choice of TB basis can be the minimal sp3 set, as
demonstrated by Boyer-Richard et al. [7]. The cost function
values obtained for different sets of the algorithm parameters
a, b1 and b2 are reported in Table I and represented in Figure 1,
for clarity. It can be seen that the fcost value decreases when
a is increased, since the global searching is facilitated and
the particles explore new areas in the search space. Moreover,
when the collaboration among particles is aided (i.e., when
the value of b2 goes up) the fcost value goes down. The best
result is obtained for the parameters set a = 0.5, b1 = 1,
b2 = 1.5. The related TB band structure is shown in Figure
2 and compared with the target DFT band structure. As an
example, we show the convergence of the on-site HME for
iodine p orbitals, derived with the parameters set a = 0.5,
b1 = 1, b2 = 1.5, in Figure 3. It can be seen that the choice of
the number of particles and of maximum iterations is sufficient
to have a converged value for the HME in this case.
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Fig. 2. TB band structure of bulk cubic MAPbI3 (blue lines) derived with
the parameters set a = 0.5, b1 = 1, b2 = 1.5 and compared with the target
DFT band structure (green lines).
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Fig. 3. Convergence of the on-site matrix element for iodine p orbitals,
derived with the parameters set a = 0.5, b1 = 1, b2 = 1.5.
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