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Abstract—We consider Voronoi finite volume schemes for the
discretization of the van Roosbroeck system and pay particular
attention to the choice of flux approximations. The classical
Scharfetter-Gummel scheme yields a thermodynamically con-
sistent numerical flux, but cannot be used for general charge
carrier statistics. We compare and analyze aspects of two state-of-
the-art modified Scharfetter-Gummel schemes to simulate (non-
)degenerate semiconductors.

I. VAN ROOSBROECK MODEL

The standard drift-diffusion model for the description of
semi-classical transport of free electrons and holes due to a
self-consistent electric field in a semiconductor device is the
van Roosbroeck system. The stationary model is given by

−∇ · (εs∇ψ) = q (p− n+ C) , (1a)
∇ · jn = qR(n, p), (1b)
∇ · jp = −qR(n, p), (1c)

where q denotes the elementary charge, εs the dielectric
permittivity, C describes the doping profile and R(n, p) the
recombination. The set of unknowns is expressed by the
electrostatic potential ψ and the quasi-Fermi potentials for
electrons ϕn and holes ϕp. We have the current densities

jn = −qµnn∇ϕn, jp = −qµpp∇ϕp, (2)

where the electron and hole densities n and p are defined by

n = NcF(ηn), ηn =
q(ψ − ϕn)− Ec

kBT
, (3a)

p = NvF(ηp), ηp =
q(ϕp − ψ) + Ev

kBT
. (3b)

The valence band density of states are identified by Nc and
Nv , the mobilities by µn and µp and the Boltzmann constant
by kB . The conduction and valence band-edge energies are
denoted by Ec and Ev and T refers to the temperature.
Non-degenerate semiconductors can be simulated with the
Boltzmann approximation F(η) = exp(η) as choice for the
strictly monotonously increasing statistics function F . Here,
we focus on degenerate semiconductors. To compare our flux
approximations, we choose the Blakemore statistics function

F(η) =
1

exp(−η) + γ
with γ = 0.27 for which an expensive

but accurate numerical flux is known.
Without loss of generality, we consider only the current density
for electrons from now on, thus partially omitting the index
n.

II. SCHARFETTER-GUMMEL CURRENT EXPRESSIONS

A. Generalized Scharfetter-Gummel Scheme

Under the assumption that the flux j and the electric field
−∇ψ are constant along each face of a cell, an integral
equation can be derived [2], which shall be satisfied by the
unknown flux

ηL∫
ηK

(
jn/j0
F(η)

+ δψKL

)−1
dη = 1, j0 = qµnNc

UT
hKL

, (4)

where δψKL = (ψL − ψK)/UT and UT = kBT
q . The

integration limits are given by ηK = ηn (ψK , ϕK) and ηL =
ηn (ψL, ϕL). The existence of a solution to (4) was proven in
[4]. We refer to the solution of (4) as generalized Scharfetter-
Gummel flux. Note that for non-degenerate semiconductor
devices the generalized Scharfetter-Gummel scheme reduces
to the classical Scharfetter-Gummel scheme [5]

jsg = B (δψKL) eηL −B (−δψKL) eηK , (5)

for a non-dimensionalized edge current jsg = jn/j0 and the
Bernoulli function B(x) := x/(ex − 1). Additionally, it was
shown in [3] that for Blakemore statistics the integral equation
(4) can be reduced to a fixed point equation, namely

jg=B (δψKL + γjg) eηL −B
(
−
[
δψKL + γjg

])
eηK . (6)

B. “Sedan” Scheme

Rearranging the drift part in (2) to include the excess
chemical potential, µex = logF(η) − η, allows to derive the
following modified Scharfetter-Gummel scheme

js = B (QKL)F(ηL)−B (−QKL)F(ηK) (7)

with

QKL = δψKL + µexL − µexK . (8)

This approach to handle degenerate semiconductors appears
to be customary in parts of the device simulation community.
The earliest reference we could find is the source code of the
SEDAN III simulator [7], therefore in the sequel we will call
this scheme the Sedan scheme.
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C. Diffusion Enhanced Scheme

Recently, in [6] another modified Scharfetter-Gummel
scheme was introduced. The idea is based on a logarithmic
average of the diffusion enhancement g(η) = F(η)/F ′(η),

gKL =
ηL − ηK

logF(ηL)− logF(ηK)
, (9)

resulting in the local flux approximation

jd = gKL

[
B

(
δψKL
gKL

)
F (ηL)−B

(
−δψKL
gKL

)
F (ηK)

]
.

(10)
We stress that, if ηK ≈ ηL, regularization strategies need to
be developed to handle the removeable singularity.

III. COMPARISON OF FLUX DISCRETIZATIONS

Based on the comparison made in [1], the discussion
in the aforementioned work is extended by the Sedan flux
approximation. We define δηKL := ηL − ηK and consider
the logarithmic error between modified flux schemes and the
generalized scheme for a fixed average η̄KL = ηL+ηK

2 . The
errors for the simulation of a degenerate semiconductor can
be seen in Figure 1. The black dashed lines correspond to
thermodynamic consistency, i.e. vanishing currents for con-
stant quasi-Fermi potentials, as well as pure drift currents, i.e.
ηK = ηL. In both cases, modified schemes agree exactly with
the generalized Scharfetter-Gummel scheme. The red dashed
line indicates agreement of the Sedan scheme and the exact
solution of (4) for a pure diffusion current j, i.e. δψKL = 0.
This can be proven analytically, see [8].
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Fig. 1. Logarithmic absolute errors between the generalized Scharfetter-
Gummel and the diffusion enhanced scheme (left) and the Sedan scheme
(right) for η̄KL = 5.

When neglecting third-order terms, error bounds between
the modified and the generalized flux dependent on the diffu-
sion enhancement can be derived, see [1], [8]

|js − j| ≤
1

2

F(η̄KL)

g(η̄KL)

(
|δψKLδηKL|+ δη2KL

)
(11)

|jd − j| ≤
1

2

F(η̄KL)

g(η̄KL)
|δψKLδηKL|. (12)

The error bounds indicate a better performance of the dif-
fusion enhanced scheme for large values of the diffusion
enhancement g, i.e. for statistics strongly deviating from the
Boltzmann. Both, the error estimates (11), (12) and Figure 1
indicate a larger area, where the diffusion enhanced and the
generalized scheme agree well for small values of δηKL and
large values of the potential difference δψKL.

IV. NUMERICAL EXAMPLE

The impact of the different flux discretization schemes
on the simulation of degenerate semiconductor devices
was studied for a GaAs p-i-n diode. A Julia-based solver
VoronoiFVM.jl [9] was used. Noteworthy is the possibility
to work with ForwardDiff.jl [10], a package based
on automatic differentiation, which provides the ability to
compute Jacobians analytically without needing any additional
information in Julia. Figure 2 shows that the errors in the
computed total currents based on the flux schemes converge
with order O(h2). Furthermore, it suggests that on coarse
meshes, which are essential for complex geometries or 3D
simulations, the Sedan flux performs more accurate than the
diffusion enhanced scheme.
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Fig. 2. Left: The I-V curves computed with the different schemes for fixed
mesh refinement. The reference solution was computed using the generalized
Scharfetter-Gummel scheme on refinement level 10. Right: Convergence
studies for the absolute errors of the total currents.

V. CONCLUSION

A discussion of advantages and issues of the presented
schemes was made and in Section IV an impression of their
performance in a real device setup was given. For an extensive
discussion further applications will be part of future research.
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