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Abstract – Machine learning and numerical simulation 

represent opposite approaches to computational analysis 

of the real world, inductive vs. deductive. However, both 

methods suffer from various uncertainties and even their 

combination often fails to link theory and reality. This 

paper presents a critical review of such connections and 

proposes improvement options for optoelectronic devices.  
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 Numerical simulations embed theoretical 

models into a practical environment. This enables a 

realistic test of such models by comparing calculated 

results to measurements. Simulations can thereby help 

explain experimental results that would otherwise be 

hard to understand. Simulations also allow for 

performance predictions of novel devices. However, it 

is well known that initial simulations hardly ever agree 

with experimental results. Possible reasons for such 

disagreement are manifold:  incomplete or incorrect 

models, unrealistic parameters, and/or computational 

mistakes. Besides measurement errors, reasons on the 

experimental side include insufficient knowledge of 

the actual device structure and/or of the experimental 

procedure. Anyway, numerical simulations often fail 

to represent the real world and create a virtual reality 

instead (Fig. 1). 

 
Fig. 1: Deductive vs. inductive method. 

 

 Machine learning, on the other hand, usually 

collects data in the real world and performs statistical 

analyses (Fig. 1). This is especially valuable when the 

amount of data is very large and hard to digest. Deep 

learning is currently the most popular machine 

learning method and it is based on multi-layered 

artificial neural networks (ANNs).
1
 But this black-box 

approach ignores any existing theoretical model. 

ANNs simply transfer input numbers into output 

numbers without regard for their meaning. Thousands 

of data sets are required to train an ANN. However, 

final predictions are often unreliable.
2
  

 In order to alleviate some of these 

uncertainties, data collection from the real world is 

often replaced by numerical simulation, thereby 

producing theoretically consistent data sets for ANN 

training. Various publications in materials science 

demonstrate this approach.
3
 Real-world data shortage 

and data scattering are circumvented this way, but at 

the expense of realism.
4
 Machine learning from flawed 

simulation models renders such flaws invisible and 

untraceable.
5
  

 The situation is similar with photonic devices, 

as experimental ANN training is hardly performed.
6
 

Simulation-trained ANNs are often employed to speed 

up design optimizations. Examples have been  

published in fiber-optics,
7
 integrated photonics,

8
 nano-

photonics,
9
 plasmonics,

10
 and meta-materials.

11
 Some 

authors embed ANNs in their numerical procedure to 

reduce the parameter space.
12

 All these applications in 

photonics are based on solutions to Maxwell’s 

equations that involve only few material parameters, 

namely refractive index and absorption coefficient. 

However, these parameters depend not only on the 

material, but also on the optical wavelength, on the 

ambient temperature, and possibly on the optical 

intensity and on processing. Variations often require a 

time-consuming ANN retraining. While gaining speed 

in the final design optimization, modeling flexibility is 

lost as well as theoretical insight. Plus, scientific 

discoveries are unlikely because ANNs typically 

interpolate between known numerical results. 

 Compared to photonic devices, optoelectronic 

devices are much more complex as they combine 

optical, electronic, and thermal processes. Their self-

consistent simulation not only involves various 

modeling approximations in need of validation, but 

also a large number of uncertain material parameters. 

Therefore, design optimization strategies known from 

photonics
13

 are hardly applied in optoelectronics.
14

 

However, simulation-based machine learning methods 

have been utilized in the design of laser diodes,
15
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semiconductor optical amplifiers,
16

 light-emitting 

diodes,
17

 and solar cells.
18

 In case of the laser example, 

the authors try to deduce the laser design from the 

desired light-current (LI) characteristic. But instead of 

typical design parameters such as wavelength, 

materials, layer thicknesses, and facet reflectivity, 

practically unknown modeling parameters are used for 

ANN training, such as injection efficiency and 

temperature coefficients.
15

 Based on such training, the 

inverse ANN design produces many broadly scattered 

parameter sets for the same LI characteristic. Further 

machine learning pitfalls in optoelectronic device 

design are evaluated elsewhere.
19

  

 Most of these examples operate within the 

virtual reality created by numerical simulations (Fig. 

1).  The quantitative validation of models and results 

by measurements is missing. In order to achieve more 

realistic predictions, several improvement options are 

suggested in the following. 

 
 

Fig. 2: Reported Auger recombination coefficients. 

 

 A main source of simulation uncertainties are 

the material properties used in the model. Published 

values of some key parameters scatter widely (Fig. 

2).
20

  The analysis of such variations as well as their 

implementation in the numerical procedure can help 

establishing error ranges for simulation results.
21

  

 The Materials Genome Initiative provides 

many good examples for the synergetic combination of 

theoretical models, computational methods, and 

experimental procedures.
22,23

 This may lead to more 

reliable models of optoelectronic material properties 

employable by device simulations. 

 Key processes in optoelectronic devices, such 

as the optical gain, are often represented by simplified 

models to reduce the computation time of full device 

simulations. High-end models for such complex 

processes can be calculated separately and then 

imported into the device simulation via ANN or other 

suitable means.
24

  

 Assumptions about the simulated device are 

usually based on design intentions and not on the 

structure actually fabricated, hindering a comparison 

between simulation and experiment. Typical examples 

are layer thicknesses, material compositions, and 

doping profiles. Direct measurements of such 

structural data should be preferred in the simulation 

setup, whenever possible. 

 The initial disagreement between simulation 

results and performance measurements is often 

eliminated by adjusting parameters in the model.
25

 

However, this is a slow iterative process mostly based 

on intuition. Each parameter usually requires a 

different measurement for calibration. Such multi-

dimensional fitting procedure opens the door for 

machine learning from experimental data. As most 

material parameters change with temperature, 

improved strategies are especially needed when 

thermal effects are relevant.        

 The industrial fabrication of optoelectronic 

devices often includes the automatic acquisition of 

performance data from various measurements. Some 

data scatter significantly, which may be related to 

unintended processing fluctuations. ANNs can be used 

to analyze such experimental variations and, e.g., 

select the set of measured data that is most appropriate 

for evaluating and calibrating simulations.  

 Generative adversarial networks (GANs) are 

increasingly popular in deep learning applications.
26

 

They may be able to combine simulation-based and 

experimental input and help linking theory and reality.  

 In conclusion, the popular combination of 

inductive and deductive computational methods 

typically suffers from an insufficient inclusion of 

experimental data. Several approaches are proposed to 

bridge the resulting gap between theory and reality, 

which is expected to improve the impact and the 

reputation of numerical simulations.     
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