
A Functional Mapping for Passively Mode-Locked Semiconductor Lasers

S. V. Gurevich
Institute for Theoretical Physics

University of Munster
Münster, Germany

J. Javaloyes, C. Schelte
Departament de Fisica, (ONL)
Universitat de les Illes Balears,

E-07122 Palma de Mallorca, Spain.

Abstract—We present a modern approach for the analysis
of passively mode-locked semiconductor lasers that allows for
efficient parameter sweeps and time jitter analysis. It permits
accessing the ultra-low repetition rate regime where pulses
become localized states. The analysis including slow (e.g. thermal)
processes or transverse, diffractive dynamics becomes feasible.
Our method bridges the divide between the phenomenological,
yet highly efficient, pulse iterative model that is the Haus master
equation, and the more involved first principle descriptions
relying on time delayed equations. Reductions of the simulation
times and of the memory footprint up to two orders of magnitudes
are demonstrated.

Index Terms—Semiconductor laser, Vertical Cavity Surface
Emitting Lasers

I. INTRODUCTION

Generation of low repetition rate picosecond pulses is of
paramount importance for a number of applications [1], [2].
Passive Mode-locking (PML) of semiconductor lasers is a
most promising method, although it still represents an experi-
mental and a theoretical challenge, see [3] for a recent review.
The Haus master equation [4] is an efficient and widely used
approach to study PML. It consists in restricting the analysis
of the field to a small temporal interval around the pulse. Yet
this method, when applied to a particular design, provides only
qualitative predictions due to the many simplifying hypothesis
involved. How to derive the Haus equation, for a specific laser
design, is also an open question. On the other hand, first
principle modeling allows representing the full dynamics of
both unidirectional and bidirectional cavities as either Delay
Differential Equations (DDEs) [5] or Delay Algebraic Equa-
tions (DAEs) [6], respectively. Such models have been applied
successfully to the study of PML with saturable absorber (SA),
and were extended to describe photonic crystals [7], external
optical feedback [8], coherent optical injection [9], nonlocal
imaging conditions [10] and localized structures (LSs) [11].

II. RESULTS

We illustrate the idea of the functional mapping (FM) [12]
using the DDE model of [5] that considers unidirectional prop-
agation in a ring laser. The equations for the field amplitude
A, the gain G and the absorption Q read

Ȧ

γ
= −A+ Y (t− τ) , (1)

Ġ = Γ (G0 −G)− e−Q
(
eG − 1

)
|A|2 , (2)

Q̇ = Q0 −Q− s
(
1− e−Q

)
|A|2 , (3)
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Figure 1. Temporal profile of the intensity In = |An|2 and of the gain Gn at
the n-th and n+1-th round-trips. After the emission of the pulse In and the
ensuing gain depletion, the so-called fast stage (solid lines), the gain recovers
until the next round-trip while the field is vanishing (dashed lines). Knowing
the final value of G(f)

n in the interval z ∈ [−δ, δ], one can deduce the initial
gain value at the next round-trip G(i)

n+1. The central panel is not up to scale
and can be several orders of magnitude larger than the outer panels.

with

Y (t) = exp

[
1− iα

2
G (t)− 1− iβ

2
Q (t)

]
A (t) , (4)

where G0 is the pumping strength, Γ = τ−1g the gain recovery
rate, Q0 the value of the unsaturated losses which determines
the modulation depth of the SA and s the ratio of the saturation
energy of the gain and of the SA sections. We define κ
as the intensity transmission of the output mirror, i.e., the
fraction of the power remaining in the cavity after each
round-trip. In Eqs. (1-3) time has been normalized to the SA
recovery time that we assume to be τq = 20 ps. The linewidth
enhancement factor of the gain and absorber sections are noted
α and β, respectively. In addition, γ is the bandwidth of the
spectral filter whose central optical frequency has been taken
as the carrier frequency for the field. This spectral filter may
(coarsely) represent, e.g., the resonance of a VCSEL [10].
If not otherwise stated (κ, α, β, s) = (0.8, 2, 0.5, 30), and
Q0 = 0.3 which corresponds to modulation of the losses of
∼ 26 %. We also set γ = 10 and Γ = 0.04, leading to a
gain bandwidth full width at half maximum of 160 GHz and
τg = 500 ps.

We wrote Eq. (1) in a form that makes apparent that
the forcing field Y (t− τ) defined in Eq. (4) is a nonlinear
function that is known over a whole interval of duration τ .
Since G and Q are functions of A, Y involves only the past
values of the field, i.e., Y (t− τ) = g [A (t− τ)]. Knowing
the forcing term Y , Eq. (1) can be solved for A over an
interval of duration τ . Integrating Eqs. (1-4), not over the
whole round-trips, but only in a selected time interval in
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the pulse vicinity, is at the core of our method. We define
the field and carrier profiles at the n-th round-trip as An (z)
and (Gn, Qn) (z). For clarity, we set in Fig. 1 the pulse at
the origin of time at the n-th round-trip. Next, we define a
small interval of duration 2δ and a local time z ∈ [−δ, δ].
Finally, we impose a condition on the waveform An: it is a
pulse of duration τp asymptotic to A = 0 if δ � τp. Under
these approximations, one can solve Eq. (1) using standard
integration techniques, e.g., Runge-Kutta method, at the next
round-trip, using the following sequence (An, Gn, Qn) →
Yn → (An+1, Gn+1, Qn+1). Doing so corresponds to writing
a functional mapping An+1 = F (An). The remainder of the
dynamics during the round-trip of duration r = t − 2δ, see
central panel in Fig. 1, in which the field is vanishing can
be found by solving Eqs. (2,3) analytically in the absence
of stimulated emission, the so-called slow stage of PML. As
such, G(i)

n+1 = G
(f)
n χ + G0 (1− χ) with χ = exp (−Γr) and

similarly for Q(i)
n+1. Solving analytically the slow stage allows

to fully cancel the stiffness inherent to the multiscale nature
of PML which is exceptionally useful in the long delay limit
τ � τg . The speedup of our method is equal to the ratio of the
actual integration domain 2δ and of the full round-trip τ , i.e.,
m = τ/ (2δ). Taking a domain of duration 2δ = 5τp, a pulse-
with of τp = 1 ps at a repetition rate of τ−1 = 1 GHz, yields
a speedup m = 200, i.e., a 24 hour simulation with, e.g., slow
thermal effects or transverse diffraction could potentially be
achieved in a few (∼ 7) minutes.

We conclude our analysis by showing how the FM can
be used for the simulation of broad area MIXSEL system
described by the DAE model of [6], [10]. The model for the
intra-cavity field E, gain N1 and absorption N2 reads

Ė = [(1− iα1)N1 + (1− iα2)N2 − 1 + i∆⊥]E + hY,(5)
Ṅ1 = γ1 (J1 −N1)−N1 |E|2 , (6)
Ṅ2 = γ2 (J2 −N2)− sN2 |E|2 . (7)

while the relation linking the intra-cavity (E) and external
cavity (Y ) fields is, after proper normalization,

Y (t) = η [E (t− τ)− Y (t− τ)] (8)

with η the external mirror reflectivity, see [10] for more details.
For the sake of simplicity, we consider diffraction in a single
transverse dimension, making the problem two-dimensional
and allowing for easier multi-parameter bifurcation analysis.
We concentrate on the spatio-temporal localization regime
where the field coalesces into a a spatio-temporal dissipative
soliton, also called a Light Bullet (LB) [13], [14]. Figure2
(a) shows a two-dimensional bifurcation diagram for the case
αj = 0 as a function of the forward and reverse bias in the
gain and absorber sections J1 and J2. Finding the region of
stability in Fig. 2a) required 24 hours on a standard PC using
the FM, instead of several months integrating the full DAE
system. Figure 2 (b) depicts the spatio-temporal LB profile
obtained with the FM method.
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Figure 2. (a) Two-dimensional bifurcation diagram showing the region of
stable existence of the LBs of the DAE model (5-7) as a function of the reverse
bias in the gain and absorber sections J1 and J2. (b) Spatio-temporal profile
of the field found with the FM with (J1, J2) = (0.498,−0.336). Other
parameters are (α1, α2, h, γ1, γ2, s, η) = (0, 0, 2, 0.003, 0.1, 30, 0.5).
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