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Abstract—We demonstrate a Bayesian optimization framework
for quantum cascade (QC) devices in the mid-infrared (mid-
IR) and terahertz (THz) regime. The optimization algorithm is
based on Gaussian process regression (GPR) and the devices
are evaluated using a perturbed rate equation approach based
on scattering rates calculated self-consistently by Fermi’s golden
rule or alternatively extracted from an Ensemble Monte Carlo
(EMC) simulation tool. Here, we focus on the optimization of
a mid-IR quantum cascade detector (QCD) at a wavelength of
4.7 µm with respect to the specific detectivity as a measure for
the signal to noise ratio. At a temperature of 220K we obtain an
improvement in specific detectivity by a factor ∼ 2.6 to a value
of 2.6× 108 Jones.

I. INTRODUCTION

The detection of light in the mid-IR and THz regime can
be accomplished by optical intersubband transitions (ISB) be-
tween quantized levels in the conduction band of semiconduc-
tor heterostructures. There exist different working principles
for ISB photodetectors which are divided mostly into two
subtypes consisting of photoconductive quantum well infrared
photodetectors (QWIPs) and photovoltaic QCDs. The focus
of this work lies on the optimization of quantum cascade
detectors [1] [2], which are commonly based on the design of
quantum cascade lasers (QCLs). By utilizing the asymmetric
conduction band potential in quantum cascade structures a
net photocurrent due to photon assisted excitation of electrons
is measurable without applying an external bias. Due to the
absence of bias, dark current noise in QCDs is negligible and
the dominating noise contribution is thus given by Johnson
noise.

The well-established simulation models for QCLs (e.g.,
EMC and rate equations [3]) can be adapted to QCDs [4]–[7].
The fast and low-noise operation of QCDs utilizes them for
applications such as spectroscopy in combination with QCL
frequency combs. Thus, the systematic design optimization
of QCDs is an essential task for obtaining highly sensitive
detectors. In terms of QCLs genetic [8] as well as Bayesian
[9] optimization algorithms have been used. The latter has
been shown to be much faster in terms of convergence and
robustness [10]. A Bayesian optimization algorithm was used
for the optimization of the operation temperature in THz QCLs
[11]. For the optimization we focus on the well-established
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Fig. 1. Calculated conduction band profile and probability densities of the
investigated mid-IR QCD structure N1022 [12] detecting at 4.7 µm. Space
charge effects are included by solving self-consistently the Schrödinger and
Poisson equation. The electron densities in each state are modeled accounting
for thermal equilibrium under zero external bias and no incident light.

mid-IR QCD design N1022 with a detection wavelength of
4.7 µm [12]. The bandstructure and calculated wavefunctions
are presented in Fig. 1. We use an one-dimensional GPR
algorithm [13] for the optimization of the specific detectivity
simulated by a perturbed rate equation approach based on
scattering rates between the quantized levels. We present
the method of GPR optimization utilizing carrier transport
simulations of mid-IR QCDs and discuss the obtained results
of improved spectral dectectivity.

II. METHOD

For the characterization of photodetector performance a key
figure of merit is the specific detectivity D∗. The Johnson
noise limited detectivity for QCDs can be expressed as [12]

D∗ = Rp

√
AR0

4kBT
, (1)

where Rp is the peak responsivity, R0 the detector resistance,
T the temperature and kB the Boltzmann constant. We have
developed a robust method calculating Rp by solving per-
turbed rate equations in analogy to [7], [14] and calculating
the absorption efficiency using transition rates calculated by
Fermi’s golden rule [3].

Our goal is to enhance the absorption efficiency, while
keeping the Johnson noise low. Therefore, we decided to
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Fig. 2. Simulated specific detectivities of test structures (blue dots) and of
the nominal structure N1022 (yellow dot) at the temperature of 220K. For
the used squared exponential covariance function K we obtain the optimized
hyperparameters σf = 1.83 · 108, σl = 5.66 and σnoise = 0.

evaluate changes in the two barriers and the small well next
to the active well. The variation width is set to 0.5 Å. To
visualize the three-dimensional optimization problem we use
the third-order space-filling Hilbert curve obtaining 512 input
points. This can then be fed into the optimization algorithm.
Therefore, we have used the one-dimensional GPR algorithm
given in the aftershoq [13] environment. A Gaussian process
is a generalization of the Gaussian distribution, and can be
described as a distribution over functions [15], [16]. The
Gaussian predictive distribution is described by a normal
distribution:

p(y∗|x∗,x,y, θ) ∼ N (µ,K), (2)

with mean µ, covariance matrix K and hyperparameters θ.
The training data from all previous iterations are summarized
in (x,y). New function values y∗ can thus be drawn for
the test inputs x∗. By optimizing the marginal likelihood
p(y|x, θ) the optimal values of hyperparameters θ for an
efficient optimization can be found.

III. RESULTS

The simulation tool was evaluated by comparing the sim-
ulated detectivity with the measured results of the QCD
teststructure N1022 given by Giorgetta et al. [12] at a tem-
perature of 300K. The simulated specific detectivity D∗ =
0.85× 107 Jones is in good agreement with the measured
value. With regard to future commercial applications, we
consecutively focus on an elevated temperature of 220K for
optimization which is accessible by thermoelectric cooling.
The simulated detectivity values D∗ are given in Fig. 2. The
different test structures are here illustrated over the Hilbert
curve node number, i.e. the respective index number on the
Hilbert curve. For the training of the GPR algorithm, we have

evaluated 42 test inputs x. We obtain an optimized structure
with a simulated specific detectivity D∗ = 2.6× 108 Jones,
which is ∼ 2.6 times higher than the simulated detectivity of
the teststructure N1022.

IV. CONCLUSION

In summary, a sensitive and precise optimization algorithm
for QCD structure designs is introduced. We applied our
modeling approach to an existing mid-IR design and could
tremendeously improve the specific detectivity of our test
design. Further extensions of our optimization framework
utilizing EMC simulations of QC devices are in progress.
GPR is suitable for EMC, since it can directly deal with
the inherently noisy outputs that are obtained from the EMC
simulations due to the stochastic sampling.
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and G. Rätsch, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 63–71.

[16] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

NUSOD 2020

24




