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Abstract—It was shown in many experiments that the
incorporation of metallic nanostructures into photovoltaic
devices results in the enhancement of solar cell efficiency.
Most simulations of such devices are based on classical
electrodynamics and neglect quantum effects arising from
nanosized metallic structures. Here, we look at nonlocal
electron-electron interactions, Lorentz friction and strong
coupling of plasmon modes with a Si substrate.

Index Terms—photovoltaics, nonclassical electron dy-
namics, theory and simulation, nanoparticles

I. SCOPE OF THIS WORK

We investigate plasmon enhanced solar cells [1], [2]
including (i) Lorentz friction caused by the oscillation of
electrons, (ii) nonlocal electron-electron interactions, and
(iii) the microscopic description of the strong interac-
tion between plasmon excitations in metal nanoparticles
(MNPs) and semiconductor states. With this, the impact
of the resulting corrections on the light absorption and
photocurrent gain, and estimate under which conditions
those corrections are significant [3], [4].

II. QUANTUM CORRECTIONS

We combine several semi-classical approaches to-
wards microscopic electron dynamics into a single feasi-
ble framework. The advantage lies in the straightforward
integration of analytical expressions into standard com-
putational procedures such as modified Mie coefficients
and multiple scattering techniques [5] for NP clusters or
commercial software such as COMSOL.

A. Lorentz friction

The microscopic dynamics of electrons inside the
MNP leads to energy loss via irradiation of the electro-
magnetic field due to their accelerated movement during
the plasmon oscillation [6], [7]. For NPs much smaller
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than the incident wavelength, Lorentz friction describes
an effective field [8] stemming from the plasmon induced
dipole field D(t) as EL = 2/3c3∂3tD(t) .

An analytical form of the exact solution for the damp-
ing γ and self-frequency ωL including Lorentz friction
within microscopic RPA leads to an extended, semi-
classical damping expression [9]
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Direct comparison to experimental work for this
framework is available within Refs. [1], [3], [6], [9] and
good agreement has been found.

B. Nonlocal electron-electron interaction
Maxwell’s equations for external sources result in the

following electromagnetic wave-equation (Gauss units)

∇×∇× ~E − k2εb ~E =
4πik2

ω
~j. (2)

The induced current density ~j is obtained with the
Navier-Stokes equation for a charged electron plasma

~j =
i

ω + iγ

(
Q2n0
m
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)
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The pressure term can be derived from classical gas
theory [10]–[12] or from quantum mechanics including
Coulomb interaction [13] and accounts in the generalized
nonlocal optical response (GNOR [14], [15]) for electron
diffusion D. This results in β2GNOR = 3

5v
2
F +D(ω+ iγ),

where vF is the Fermi velocity of the material.
Local scattering matrices are extended by a single

analytic parameter describing nonlocal behavior of the
conduction band electron. This nonlocal parameter van-
ishes under the assumption of local response (β → 0)
recovering original Mie or Fresnel coefficients [16], [17].
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C. Strong coupling

The photon absorption probability δw within the
Fermi Golden Rule approach for a dipole near-field is

δw =
2π

~

∣∣∣〈~k1|W |~k2〉∣∣∣2 δ(Ep(~k1)− En(~k2) + ~ω).
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Fig. 1. Impact of strong coupling corrections on the photocurrent. (A)
with and (B) without particle–substrate coupling. The lattice period
is Λ = 20 nm and various nanoparticle radii a are used. The insets
show the difference between classical and nonlocal theory results.

Hereby, ~k1(~k2) is the momentum of the holes (elec-
trons) and W defines the coupling between the subbands.
The coupling matrix W depends on the environment. In
the presence of the dipole field of a nanoparticle with
radius a and bulk plasma frequency ωp it reads

W =W+eiωt + c.c =
e

4πε0R2
~̂n · ~D0 sin(ωt+ φ),

where W± correspond to the absorption and emission of
photons, respectively, and have the form

W+ =
e

4πR2ε0

eiφ

2i
~̂n · ~D0,

where φ is a phase factor. Hereby, ε0 is the vacuum
permittivity, R is the distance form the dipole axis
and ~̂n the surface normal of the substrate. The dipole
moment ~D0 is analytic for a spherical nanoparticle and
local electron dynamics, namely ~D0 =

ω2
p

ω2
1

~E a3

2 , where
ω1 = ωp/

√
3 is the related Mie frequency of the dipole and

~E = iω ~A0e
i(ωt−~k~r) is the incident field at frequency ω

as before. For nonlocal electron dynamics, we determine
~D0 from the nonlocal near-field.
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