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Abstract—Due to their small separation of longitudinal modes,
Fabry-Pérot type laser diodes show rich mode competition effects.
For example streak camera measurements show cyclic mode
hopping, where the currently active longitudinal mode changes
from lower to higher wavelengths. This effect can be explained
by beating vibrations of the carrier densities in the quantum
wells and can be included in rate equation simulations by using
an effective mode coupling term. In this work we calculate
this effective mode coupling term on a microscopic level using
Coulomb scattering. We investigate how the effective coupling
term depends on the carrier densities in the quantum wells
for a green nitride laser diode and compare the result with
coupling terms found in literature. The behavior is similar if the
frequency difference of the longitudinal modes is small, deviations
are observed for larger frequency differences.

Using a streak camera, various mode competition effects
can be observed in laser diodes [1]. An example is shown
in Fig. 1. Here effects of third order in the optical field
need to be considered in order to explain these longitudinal
mode dynamics. One of these effects is the effect of spectral
hole burning, where a strong optical field lowers the carrier
distribution functions in regions of the Brillouin zone where a
optical transition is possible. This dip of the carrier distribution
functions lowers the overall gain and depends heavily on the
carrier scattering time [2].

In the following we will instead discuss a different effect,
namely the mode coupling caused by beating vibrations of
the carrier densities in the quantum wells. As with the effect
of spectral hole burning, this effect also depends strongly on
the carrier scattering and in this paper we want to discuss the
influence of a statically screened Coulomb interaction. In order
to describe these beating vibrations, it is beneficial to split the

distribution functions into two parts:

fk(z) = f0k + δfk(z).

Here f0k is the average distribution function and δfk(z) is
a small deviation from this average that depends on the
longitudinal coordinate z. If two or more longitudinal modes
are active, they cause oscillations of the distribution functions
and contribute to δfk(z).

The period of these oscillations is given by the frequency
difference of the two longitudinal modes and is therefore on
the order of magnitude of 10 ps. In simulations we want to
look at the mode dynamics on a time scale of 100 ns, therefore
considering δfk(z) in the equations of motion directly can
be time consuming. It is a lot more convenient to adiabati-
cally eliminate δfk(z) and obtain an effective mode coupling
term [3]:

Ṡp
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∑
q 6=p

SpSqg(ωq − ωp). (1)

Here Sp denotes the number of photons in mode p and ωp is
the respective frequency. Note that unlike spectral hole burn-
ing, this effect only causes an interaction between two different
longitudinal modes. The coupling between two modes is given
by a function g(∆ω), which is assumed to only depend on the
frequency difference ∆ω = ωq−ωp. This function is often split
into a symmetric part B(∆ω) = B(−∆ω) and an asymmetric
part A(∆ω) = −A(−∆ω).

Fig. 2 shows how the symmetric and asymmetric parts
depend on the carrier density. The band structure, matrix
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Fig. 1. Measured and simulated streak camera images for a green nitride laser diode with a cavity length of 900 µm. Here the laser output is shown as
function of time and wavelength. The simulation uses an effective coupling term as given in Eq. (1).
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Fig. 2. Asymmetric (left) and symmetric (right) mode coupling terms shown as function of the frequency difference of the two longitudinal modes. Here one
of the two modes is chosen to be at the gain maximum.

elements and envelope functions used in the calculations were
calculated using the k · p method for an In0.21Ga0.79N QW
with parameters taken from [4]. The asymmetric term is
responsible for the effect of mode rolling, where the currently
active mode changes from lower to higher wavelengths. The
asymmetric term is negative below transparency and positive
for carrier densities above transparency, which agrees with
the experiment. If a simple scattering time is used instead
of Coulomb scattering, the asymmetric term has the following
form, assuming the scattering time is sufficiently small:

A(∆ω) ∝ Γ2Imχ(ω0)Reχ′(ω0)
1

∆ω
. (2)

Here ω0 is frequency corresponding to the gain maximum,
Γ denotes the confinement factor and χ is the susceptibility
of the quantum well. Using Reχ′ = αImχ′, where α is
the antiguiding factor, this is equivalent to the asymmetric
coupling term found in literature [3]. For a carrier density of
1012cm−2 Eq. (2) is also shown in Fig. 2, where it agrees well
with the coupling term obtained using Coulomb scattering for
low frequency differences. However deviations from the 1/∆ω
behavior can be observed for higher frequency differences.

The symmetric term, as shown in Fig. 2, becomes more
relevant as the carrier density increases and is always nega-
tive. This term therefore leads to active longitudinal modes
suppressing their neighboring modes, so this term favors only
one or two modes being active at any given point in time. If
this term is neglected and only the asymmetric term is used
in simulations, an equilibrium state is reached, where a few
neighboring modes are active at the same time. This is not
observed in the experiment, so it is important to include this
term in simulations. Using a simple scattering time, this term
has the form of a Lorentzian, where broadening is determined
by the scattering time τs:

B(∆ω) = −B τs
∆ω2τ2s + 1

For Coulomb scattering we can obtain a scattering time by
fitting a Lorentzian to the data shown in Fig. 2. This scattering
time is shown in Fig. 3. Here the scattering time is about
200 fs, which is on the expected order of magnitude.

In this work we discussed the influence of Coulomb scat-
tering on the effective mode coupling term caused by beating
vibrations of the carrier density. Compared to the mode
coupling terms found in literature, Coulomb scattering shows
the same behavior for smaller frequency differences, however
deviations can be observed for higher frequency differences.
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Fig. 3. Scattering times obtained by fitting a Lorentzian to the symmetric
mode coupling term as a function of the carrier density.
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