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Abstract— Laser pulses can colour noble metals by inducing 

nanoparticles on their surface. The colours are linked to laser 
parameters and nanoparticles geometry. We apply deep 
learning to the direct prediction of colours from a laser 
parameter set or a nanoparticle particle distribution. A new 
method for inverse design via deep learning is also proposed to 
retrieve the appropriate laser parameters or nanoparticle 
distribution given the desired colour. 
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I. INTRODUCTION  

Deep learning (DL) is a sub-field of artificial intelligence 
where multi-layered artificial neural networks, or deep neural 
networks (DNNs), are used for accurate prediction and 
classification [1]. Recently, we have seen a growing interest 
in applying DL to nanophotonic problems [2] because this 
approach holds the promise for reducing costs associated with 
laboratory experiments and simulations. If data from 
previous experiments is available, further experiments or 
simulations can be replaced by a DNN.  
 
The interest is even higher for inverse design in 
nanophotonics, where we are seeing the use of  DL to search 
for non-intuitive and optimized designs to produce a desired 
outcome [2]. If data is available, these DL based methods are 
an improvement on traditional gradient-based or genetic-
based algorithms commonly used in nanophotonics [3]. 
These traditional methods require the use of multiple 
simulations which, in the case of large-scale calculations 
common in plasmonics, can be very time consuming. 

Here we discuss how to take advantage of large datasets 
produced in previous research for prediction and inverse 
design using DL. In [4], [5], picosecond laser pulses were 
used to create colours on noble metal surfaces. These 
colours are due to the plasmonic effects arising from the 
nanoparticle distributions generated from ablation and 
redeposition. Large-scale finite difference time-domain 
(FDTD) simulations were conducted to calculate the colour 
from a wide range of nanoparticle distributions to explain 
the colour transition reported in experiments. In this work, 
we use the experimental (colours vs. laser parameters) and 
simulation (colours vs. nanoparticle distribution) data sets 
compiled from [4] to train DNNs for the direct prediction of 
colours from laser settings or nanoparticle distributions. We 
also introduce a simple method for the inverse predicition of 
the laser/nanoparticle parameters for a desired colour which 
can easily be implemented for a number of applications.  

II. DIRECT PREDICTION 

We apply DL to the direct prediction of the (R, G, B) colour 
values from new laser parameters where the DNN is trained 
using the experimental data set linking four laser parameters 

(fluence, scanning speed, hatch spacing, and number of 
bursts per pulse) to perceived colours. We also predict 
colours from new nanoparticle distributions, where the DNN 
is trained using the simulated data set linking three 
nanoparticle distribution parameters (particle radius, inter-
particle spacing, and amount of the particle radius 
embedded into the surface) to the computed colours.  
 
Cross-validation was used to find DNN architectures that 
provide minimum error and minimize the size of the DNN. 
A three hidden layer DNN with sixty nodes per hidden layer 
was used for the laser parameter data set, and a four hidden 
layer DNN with twelve nodes per hidden layer was chosen 
to model the simulation data set. The two DNNs are trained 
using 90% of the available data. The other 10% is used for 
testing. The DNNs were created using TensorFlow [6] and 
were trained on the SOSCIP GPU cluster [7]. 

Some of the colours from the testing set are displayed for the 
laser set in Fig. 1(a) and the simulation set in Fig. 1(b). We 
see excellent agreement between the measured/simulated 
colours and those predicted by the DNN. To differentiate 
between the real and predicted colours, we use ΔE [8], a 
quantitative measure that describes the similarity of colours. 
A ΔE of 7 or lower is usually used as a benchmark for if the 
colour is close enough to the desired colour for industrial use. 
The mean ΔE is 5.3 for the laser parameter test set and 2.67 
for the FDTD test set. 
 

 
Fig. 1: (a) Comparison between the measured laser colours (left) and DNN 
predicted colours (right) on the laser test set. (b) Comparison between the 
FDTD calculated colours (left) and the DNN predicted colour (right). 

The accuracy of these methods demonstrates the ability to 
replace experiments and simulations with DL when enough 
data exists. These methods can even be used for small 
extrapolations, thus expanding the dataset further without 
the need for further experiment or simulation. 

III. INVERSE DESIGN 

The prediction of laser/nanoparticle parameters from a 
desired colour can’t be done directly through training an 
inverse DNN because of non-uniqueness. Multiple laser 
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parameters or nanoparticle geometries can result in the same 
colour. Training a single inverse DNN using the data would 
confuse the DNN resulting in inaccurate predictions. 
 
There are several published suggestions to get around this 
problem [9]–[11] however these methods would be 
complicated to implement for a novice. A simpler method is 
to train N DNNs, where N is the number of input parameters 
(4 for the laser set and 3 for the simulation dataset). Each 
DNN is used to predict a single parameter from the desired 
colours and the other parameters.  
 
As an example, suppose we want to know what nanoparticle 
geometry will give us a specific colour. For this situation, 
N=3 DNNs are trained, one predicting the particle spacing 
(from the colour, radius, and embedding), another predicting 
the embedding (from the colour, radius, and spacing), and the 
last predicting the radius (from the colour, embedding, and 
spacing).  
 
Once these are trained, we can then use them iteratively to 
predict geometric parameters required for that colour.  We 
initialize the particle radius and embedding with random 
values (or the mean value of the data set). We then use the 
first DNN to calculate the particle spacing. Using this and the 
random radius, we can use the second DNN to calculate the 
new embedding. We then use the embedding and spacing to 
calculate the radius with the last DNN. This iterative 
procedure is run until the parameters relax to their final values 
which will give the desired colour (if the colour is feasible 
through the laser/nanoparticle technology). This process is 
called the iterative multivariable inverse design method and 
is shown in Fig. 2. This method is also used for the laser 
parameter set where N=4 DNNs are trained and used.  
 
We again use 90% of the data for training and the other 10% 
for testing. After we receive the output laser (or nanoparticle 
distribution) parameters, we compare the input colour to the 
actual colour generated by the output parameters. A render of 
some colours from the test set is shown in Fig. 3(a) for the 
laser set and Fig. 3(b) for the FDTD set. The input colours are 
shown on the left, and the colour from the output parameters 
are shown on the right. The mean ΔE is 6.31 for the laser test 
set and 2.83 for the FDTD test set. 

 
Fig. 2: Iterative multivariable inverse design method. Initial values are 
assumed for the radius and embedding are assumed. Then DNNs are used to 
iteratively find the proper radius, embedding, and spacing for a given colour. 

 
Fig. 3: (a) Comparison between the input laser colours (left) and colours 
resulting from DNN predicted laser parameters (right) on the test set. (b) 
Comparison between the input colours (left) and colours resulting from 
DNN predicted geometric parameters (right) on the test set. 

This method is simple in implementation and accurate in 
prediction. This can be applied for industry. For example, in 
[4] plasmonic artwork was created on silver surfaces at the 
Royal Canadian Mint by handpicking colours from a 
database, which limited the artistic ability of the designers. 
Instead of designing plasmonic artwork by manually 
searching for colours that are achievable, the inverse design 
algorithm can be used to find the laser parameters best 
suited for the wanted design even if they are not exactly 
contained in the data set.  
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