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Abstract—Halide Perovskites are considered as solid semi-
conductors since the beginning of their solar cell development. 
However, on their film or devices, direct and indirect observa-
tions of mobile ions are currently reported. Mobile ions are 
included in the present study within the drift-diffusion approx-
imations, in addition to general carriers. Ion migration inside 
the perovskite layer and the abnormal hysteresis effect in the 
current-voltage measurements are simulated in comparison 
with the experiments of classic perovskite solar cells. The work 
is promising for the advancements of halide-perovskite-based 
devices, such as solar cells, light emitting diodes, lasers, photo-
detectors, transistors, or memoirists. 
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I. INTRODUCTION 

More comprehensions of the halide perovskites accom-
pany the robust improvement of their solar cells, whose rec-
ord of the single junction [1] and 2-terminal tandem [2] are 
22.7% and 25.2%, respectively. Halide perovskite materials 
(ABX3) share a similar cell structure with the classic mineral 
oxide perovskite (ABO3). The cation A site is typically com-
posed of organic methylammonium (MA), formamidinium 
(FA), or inorganic Cs or Rb cations. Generally, lead (Pb) sits 
in the B site, and the X site is filled with halide atoms I, Br, 
or Cl. Based on linear combinations of orbitals including 
spin-orbit coupling (SOC) [3], the atomistic computations 
explained that the appropriate absorption and transport prop-
erties are afforded by the multi-bandgap and multivalley 
nature of their band structure. This hypothesis is further con-
firmed by the study of the structural and optical properties 
[4]. The low effective mass of excitons in MAPbI3 was accu-
rately determined using magneto-reflectivity at very high 
magnetic fields model [5]. As a result, halide perovskites are 
considered as solid semiconductors [6] with an efficient pho-
to-conversion. Nevertheless, many groups recently reported 
the direct and indirect measurements [7][8] of mobile ions 
inside halide perovskites under different operation condi-
tions, which is quite different from the traditional silicon or 
III-V materials. The ion migration is assumed to contribute 
to one of the major instabilities of perovskite solar cells 
(PSCs), the abnormal hysteresis effect [9], which means the 

current-voltage (J-V) characteristics depends on the scan 
rate, the scan direction or the precondition. With such effect, 
the effective photon-to-electron conversion eficiency could 
be questioned.  

In the study, the drift-diffusion approximations and the 
continuity equations of electrons and holes are extended in 
the simulator atlas to consider ions moving inside the perov-
skite layer. One of the most widely studied compounds, 
MAPbI3 perovskite is chosen to investigate the ion migration 
within the TiOx/MAPbI3/Spiro-OMeTAD architecture. The 
simulated ion migration and the corresponding hysteresis 
effect are presented and discussed. 

II. MODELING AND DISCUSSION 

The architecture is experimentally studied as mentioned 
in the previous report [10]. The anatase TiOx (165 nm-thick) 
is the electron transport layer, and the Spiro-OMeTAD (50 
nm-thick) is the hole transport layer, sandwiching the ab-
sorber MAPbI3 (total 335 nm-thick). The 135 nm-thick 
MAPbI3 is related to the part inside the porosity of 
mesoporous TiOx layer. The electrodes are Ohmic. The pho-
to-induced carrier generation processes are introduced by the 
complex refractive index of the materials, in addition to the 
bimolecular recombination, and the trap-assisted recombina-
tion in the bulk and at the TiOx/MAPbI3 interface. 

The schematic architecture of PSC is drawn (Fig. 1), 
along with the simulated band alignment and the electric 
field (Efd). Two Efd spikes in a logarithm scale are related to 
two hetero-junctions, while the Efd is uniform in the middle. 
In the dark and short circuit (Fig. 2 a-c), carriers are depleted 
under built-in potential, and the negative ions accumulate 
near the TiOx layer, where the ionized dopants are positive. 
Under illumination of one sun and 1.5 V bias (Fig. 2 d-f), the 
perovskite layer is filled with photo-generated carriers, and 
the negative ions shift towards to the positively biased anode. 
After preconditioned under one sun and 1.5 V bias for 20 
seconds, the J-V characterization is performed from 0 to 1.5 
V then back to 0 V. The hysteresis effect is observed in the 
experiments and simulations (Fig. 3). The variation of the 
open circuit voltage is well reproduced, while the difference 
of the short-circuit current might come from the thickness of 
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the MAPbI3 layer or the device surface area. The simulated 
J-V characteristic above 1 V shows a similar trend to the 
experiments, indicating a saturation of the ion migration. 
According to the simulation in the study, the interface re-
combination at TiOx/MAPbI3 is mandatory to reproduce the 
hysteresis effect, besides the ion migration. This might inter-
pret the observation of ion migration in the inverted PSCs, 
however, who are almost free of the hysteresis effect. The 
interface condition between perovskite and PCBM is as-
sumed to be better than that at TiOx/MAPbI3 interface. 

 
Fig. 1. a) Schematic architecture of PSCs, b) the simulated band alignment 
and c) the electric field profile. The band alignment and the electric field 
share the same x-axis. Spiro is short for Spiro-OMeTAD. 

 
Fig. 2. Potential, carrier and ion density a-c) in the dark and short circuit, 
d-f) under light and 1.5 V bias. Cn indicates major part of the negative ions. 

 
Fig. 3. Experimental and simulated hysteresis J-V characteristics. FW is 
the forward scan and BW is the backward scan. Before any scan, the 
devices are preconditioned under one sun and 1.5 V bias for 20 seconds. 
The y-axis in b) uses a logarithm scale. 
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