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Abstract—In this work, we present the design of InGaN 
microstructures by manipulation of quantum well bandgap via 
strain engineering. By coupling strain field extracted from 
molecular dynamics simulation to k.p simulation, we are able 
to associate the effect of geometry and strain of a structure to 
its light emission. 
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I. INTRODUCTION 

Coming to the age of nanotechnology, there is a trend of 
miniaturization to micrometer and nanometer size for 
optoelectronic and photonic devices. Miniaturization 
naturally increases light extraction efficiency [1], but more 
importantly, photonic devices exhibit unique physical 
properties within this mesoscopic regime that enables 
technologies such as photonic crystal [2], plasmonic 
nanostructures [3] and semiconductor nanowires [4] for 
integrated photonic circuits, bio-sensing and photovoltaics. 
In context of optoelectronics, miniaturization not only 
increases quantum efficiency [5, 6], but also inspires various 
novel applications, including tuning of emission color [6, 7] 
and custom design of band profiles [8]. Despite achieving 
different goals, these mesoscopic optoelectronic devices are 
all based on the same principle – tuning of the bandgap or 
band profiles via manipulation of quantum-confined Stark 
effect (QCSE) by strain engineering. 

The most fundamental manifest of strain-induced spectral 
shift phenomenon for III-Nitride based devices is a spectral 
shift of photoluminescence (PL) after a reduction in 
dimension [5, 9], which is usually attributed to the strain 
relaxation of the multiple quantum wells (MQWs) due to 
sizing [5, 9-11]. There is general consensus that the MQWs 
would be able to relax the strain induced by lattice mismatch 
towards the sidewalls after sizing, resulting in a decrease in 
the piezoelectric polarization field inherent in c-plane 
wurtzite nitride devices and thus a reduction in the QCSE 
[11], leading to a blue-shift in the PL spectrum originating 
from the edge of the device. 

However, there has been little investigation and 
explanation in the spatial distribution of the emission 
wavelength in relation to the strain field of a micro-/nano- 
structure. An earlier study [10] explained qualitatively that 
the emission wavelength can be affected by strain due to an 
interplay between QCSE and deformation potential. This 
seems to suggest that there are multiple factors affecting the 
mechanism of strain-induced spectral shifts. 

Therefore, here in this work, we present on a 

computational approach to investigate the effect of strain 
field on bandgap on quantum wells in micro-/nano- 
structures.  Molecular dynamics are employed to simulate 
the strain profiles of micropillars. The approach can more 
accurately model the lattice-mismatched coherent interface 
and strain-relaxed surfaces than conventional finite element 
method (FEM) as used in previous studies [12]. The 
underlying mechanisms of the dimensional-dependent 
spectral shifts can be better understood, which are crucial for 
the development of novel strain-engineered devices of micro- 
/nano- scale. 

II. SIMULATIONS 

 2D molecular dynamics simulations are performed using 
LAMMPS [13] with a Stillinger-Weber potential for InGaN 
[14, 15]. The GaN block is fixed at the bottom (y = 0) with a 
compressive strain of 0.023% to emulate a boundary that is 
lattice-matched to a partially relaxed GaN buffer with a 
biaxial stress of 1 GPa. The computational domain is reduced 
to half a 2 µm-diameter micropillar, i.e., a dimension of 1 
µm × 1 µm, by using a symmetric boundary, which restricts 
the lateral movement of the atoms, is imposed on one side of 
the block. 15 pairs of QWs are implemented such that the 
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Fig. 1. (a) Out-of-plane strain field of a micropillar extracted from
molecular dynamics simulations, and (b) the corresponding calculated
emission wavelength 
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InGaN wells have 18% Indium content and ~4.7 nm (9 
atomic layers) of thickness, while the GaN barriers have a 
thickness of ~13.5 nm (26 atomic layers). The InGaN layers 
are initialized to be lattice-matched to the GaN layers, and 
are implemented as a random alloy, i.e., the Ga atoms in the 
wurtzite structure is randomly replaced with Indium atoms 
within the supposed InGaN quantum well regions, with the 
proportion of In atoms satisfying the estimated Indium 
content for the quantum wells. The structure is then 
subjected to an energy minimization to relax the atomic 
positions 

Subsequently, the strain field extracted from the 
molecular dynamics simulation is included in the k·p 
perturbation theory to solve the Schrödinger equation, 
according to the steps described in [16-18]. For each point of 
calculation, a locally averaged Indium composition is also 
used instead of using a single value of Indium composition 
for all positions in all QWs. 

III. RESULTS AND DISUCSSIONS 

 Fig. 1(a) shows the out-of-plane strain field as extracted 
from molecular dynamics simulations. The micropillar 
exhibit a relaxation of the MQWs at the edge (X = 1000 nm) 
as expected. When the micropillar relaxes as a whole, the 
lattice-matching interface will then try to maintain the lattice 
arrangement, thus increasing the out-of-plane tensile strain at 
the edge as shown in Fig. 1(a). The composition fluctuation 
of the InGaN well layers due to the nature of random alloy 
also results in fluctuation of the strain field.  

Fig. 1(b) shows the calculated emission wavelength, 
using the strain field from molecular dynamics in the k.p 
calculations. As can be seen, the fluctuation in InGaN well 
strain as a result of the Indium composition fluctuation 
causes a fluctuation of the emission wavelength. We can also 
observe that there is a significant blue-shift at the edge of the 
micropillar at the edge due to strain relaxation. 

Fig. 2 shows near-field photoluminescence (PL) 
measurement by Scanning Near-field Optical Spectroscopy 
(SNOS). The experimental measurement demonstrates 
similar fluctuation in emission wavelength and sharp blue-
shift near the edge of the micropillar. 
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Fig. 2. Near-field PL line profile of a 2 µm-diameter micropillar measured
by SNOS 
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