High Resonance Frequency in a Coupled Cavity DFB-LD with Two Phase-Shifts by Photon-Photon Resonance

Takahiro Numai

Department of Electrical and Electronic Engineering, Ritsumeikan University 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan Phone: +81-77-561-5161 E-mail: numai@se.ritsumei.ac.jp

Abstract- Enhancement of resonance frequency in a coupled cavity DFB-LD with two phase-shifts by photon-photon resonance is reported. The resonance frequency is 71.3 GHz and the 3-dB down band width is 95.9 GHz when the injected current is 3.075 times the threshold current.

I. INTRODUCTION

To achieve high resonance frequencies for high speed direct modulations of semiconductor lasers, push-pull modulations [1]-[4], external injection of intensity modulated light [5], photon-photon resonance [6]-[8] have been studied. In this paper, to obtain a high resonance frequency and stable SLM operation simultaneously, a coupled cavity DFB-LD with two phase-shifts by photon-photon resonance is numerically studied. When the injected current is 3.075 times the threshold current, the resonance frequency is 71.3 GHz, much higher than 40.45 GHz [8]. The 3-dB down band width is 95.9 GHz.

II. OPERATING PRINCIPLE AND STRUCTURE Rate equations are written as

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}S_1 &= \Gamma_1 \Big[G_1 - \beta_1 S_1 - \theta_{12} S_2 \Big] S_1 - \frac{1}{\tau_{\mathrm{ph1}}} S_1, \\ \frac{\mathrm{d}}{\mathrm{d}t}S_2 &= \Gamma_2 \Big[G_2 - \beta_2 S_2 - \theta_{21} S_1 \Big] S_2 - \frac{1}{\tau_{\mathrm{ph2}}} S_2, \\ \frac{\mathrm{d}}{\mathrm{d}t}n &= \frac{J}{ed} - \Big[G_1 - \beta_1 S_1 - \theta_{12} S_2 \Big] S_1 \\ &- \Big[G_2 - \beta_2 S_2 - \theta_{21} S_1 \Big] S_2 - \frac{1}{\tau} n, \end{split}$$

where S_i is photon density, Γ_i is optical confinement factor, G_i is amplification rate, β_i is self-saturation coefficient, θ_{ij} is cross-saturation coefficient, τ_{phi} is photon lifetime where subscripts i and j are 1 or 2, n is carrier concentration, J is injected current density, e is elementary charge, d is total thickness of active layers, τ_n is carrier lifetime. Stable condition for coexistence of two modes is given by

$$\frac{\theta_{12}\theta_{21}}{\beta_1\beta_2} \le 1.$$

From small-signal analysis for $S_1 \gg S_2$ the resonance frequency f_r is approximately written as

$$f_{\rm r} \simeq \frac{1}{2\pi} \Bigg[\frac{\partial \, G_1}{\partial n} \, \frac{S_{10}}{\tau_{\rm ph1}} + \Gamma_1 S_{10} \Gamma_2 S_{20} (2\beta_1 \beta_2 - \theta_{12} \theta_{21}) \Bigg]^{1/2} \, , \label{eq:fr}$$

where S_{10} and S_{20} are steady state values of S_1 and S_2 , respectively. The second term in the bracket contributes to enhancement or diminution of resonance frequency. To obtain high resonance frequency, it is important to achieve

$$2\beta_1\beta_2 - \theta_{12}\theta_{21} > 0.$$

To satisfy this condition, a coupled cavity DFB-LD shown in Fig.1 is proposed. Region 1 has phase-shifted gratings with the grating coupling coefficient κ_1 =40 cm⁻¹, the region length L_1 =300 μ m, the corrugation pitch Λ_1 =238.45 nm, and the phase-shift $\Delta\Omega_1$ = $-\pi$ at the center of Region 1. Region 2 has phase-shifted gratings with the grating coupling coefficient κ_2 =40 cm⁻¹, the region length L_2 =300 μ m, the corrugation pitch Λ_2 = Λ_1 - $\Delta\Lambda$, and the phase-shift $\Delta\Omega_2$ = -0.9 π at the center of Region 2. Both facets are anti-reflection coated; the power reflectivities R_1 and R_2 are assumed to be zero.

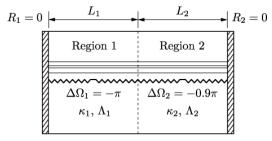


Fig. 1 Analytical model of a coupled cavity DFB-LD with tow phase-shifts. Both facets are anti-reflection coated.

Undoped active layers consist of five 7.5 nm-thick $In_{0.557}Ga_{0.443}As_{0.982}P_{0.018}$ strained quantum wells, which are sandwiched by 23 nm-thick $In_{0.738}Ga_{0.262}As_{0.568}P_{0.432}$ barriers. The substrate is n-InP with impurity concentration of $10^{18}cm^{-3}$. The

upper cladding layer is p-InP with impurity concentration of $5\times10^{17} \text{cm}^{-3}$. The waveguide is $1.5~\mu\text{m}$ wide. Region 1 and Region 2 have a common anode; Region 1 and Region 2 have a common cathode. Even though common electrodes are used for the two regions, the push-pull modulations for the main-mode and the sub-mode are obtained when the following conditions are simultaneously satisfied.

$$\begin{split} \left[G_1(n) - \beta_1(n)S_1 - \theta_{12}(n)S_2\right] > 0 \\ \left[G_2(n) - \beta_2(n)S_2 - \theta_{21}(n)S_1\right] < 0 \end{split}$$

III. SIMULATED RESULTS

Figure 2 shows the resonance frequency f_r as a function of the grating pitch difference $\Delta\Lambda$ for the injected current I=20 mA. The resonance frequency f_r has a peak of 21.1 GHz at $\Delta\Lambda=1.6$ nm. This f_r is 2.75 times of $f_r=7.68$ GHz at $\Delta\Lambda=0$ nm.

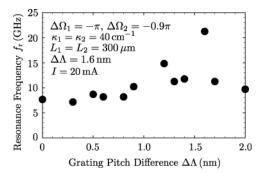


Fig. 2 Resonance frequency f_r as a function of the grating pitch difference $\Delta \Lambda$.

Figure 3 shows the resonance frequency $f_{\rm r}$ as a function of $I/I_{\rm th}-1$ at $\Delta\Lambda=1.6$ nm where I is the injected current and $I_{\rm th}$ is the threshold current. The resonance frequency $f_{\rm r}$ increases with $I/I_{\rm th}-1$, and the resonance frequency $f_{\rm r}$ is 71.3 GHz when $I/I_{\rm th}-1=2.075$. When $I/I_{\rm th}-1$ is larger than 2.075, the stable condition is not satisfied.

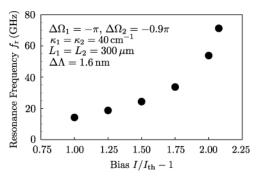


Fig.3 Resonance frequency f_r as a function of the relative bias current $I/I_{th}-1$.

Figure 4 shows frequency response for $\Delta\Lambda$ =1.6 nm and I/I_{th} =2.075. The resonance peak is clearly observed at the modulation frequency of 71.3GHz. The 3-dB down band width is 95.9 GHz.

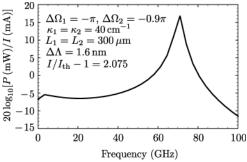


Fig.4 Frequency response.

Figure 5 shows oscillation spectrum for $\Delta\Lambda$ =1.6 nm and I/I_{th} =1=2.075. The main-mode oscillates at 1.52443 µm which is Bragg wavelength in Region 1. The wavelength of the largest sub-mode is 1.52294 µm. The resonance frequency was enhanced due to photon-photon resonance among the main-mode and the largest sub-mode.

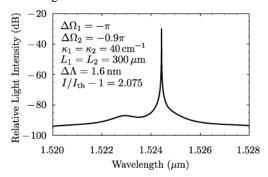


Fig.5 Oscillation spectrum.

IV. CONCLUSIONS

The coupled cavity DFB-LD with tow phase-shifts was proposed and simulated. When the grating pitch difference $\Delta\Lambda$ between Region 1 and Region 2 was 1.6 nm and I/I_{th} -1=2.075, the resonance frequency and the 3-dB down bandwidth were enhanced to 71.3 GHz and 95.9 GHz, respectively.

REFERENCES

- [1] D. D. Marcenac, M. C. Nowell, and J. E. Carroll, IEEE Photon.Technol. Lett., vol.11, pp.1309-1311 (1994).
- [2] M. C. Nowell, J. E. Carroll, R. G. S. Plumb, D. D. Marcenac, M. J. Robertson, H. Wickes, and L. M. Zhang, IEEE J. Selected Topics Quantum Electron. vol.1, pp.433-441 (1995).
- [3] J. C. R. Maciejko, and T. Makino, IEEE J. Quantum Electron., vol.32, pp.2156-2165 (1996).
- [4] Junqiu Qi, Yanping Xi, Xun Li, NUSOD 2015, pp.127-128, Taipei, Taiwan (2015).
- [5] H. Ishihara, Y. Saito, W. Kobayashi, and H. Yasaka, IEICE Trans. Electron., vol.E95-C, pp.1549-1551 (2012).
- [6] P. Bardella, W.W. Chow, I. Montrosset, NUSOD 2016, pp.11-12, Sydney, Australia (2016).
- [7] T. Numai, Optik, vol.127, pp. 9578–9581 (2016).
- [8] T. Numai, NUSOD 2017, pp.35-36, Copenhagen, Denmark (2017).