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Abstract—Several key concepts for the description of nonlin-
ear pulse propagation in dispersive optical media will be intro-
duced. Among those are envelope models, short-pulse equations,
as well as our generalized approach [1]. Effects like limitations for
ultrashort optical pulses [2], cusp formation [3], and solitons that
mimic event horizons for smaller optical waves will be presented.
Moreover, it will be demonstrated, both numerically and more
efficiently by a new analytic theory [4], that small optical waves
can be used to control such solitons [5], [6].

I. ULTRASHORT PULSES

Pulses in nonlinear optical fibers are typically described
by the nonlinear Schrödinger equation (NLSE). In the case of
short pulses with wide spectra, additional effects, as higher-
order dispersion and Raman-scattering have to be taken into
account by a generalized nonlinear Schrödinger equations
(GNLSE). The GNLSE provides a better description: too short
pulses become wide in the frequency domain, such they are
inevitably affected by frequency components evolving in the
region of positive group velocity dispersion (GVD). These
pulses are then either destroyed, because solitons in focusing
materials require negative GVD, or they increase in duration

due to Cherenkov radiation. An alternative approach to the
description of few-cycle pulses is to employ non-envelope
equations, that are designed to describe non-envelope pulses in
particularl and directly calculate their electric field. In this way,
they provide more information compared to envelope models,
in particular they remove the arbitrariness of the carrier-
envelope relation. Such equations are loosely referred to as
short pulse equations (SPE) [7], which, to some surprise, have
proven to be integrable shortly after [8]. With decreasing pulse
duration its solitary solutions become increasingly sharp and
finally a cusp singularity develops at the top of the soliton [9].
Neither the limiting cusp soliton nor further singular solutions
of SPE, which are even shorter than the cusp solution, are
acceptable from the physical point of view. Therefore, the
SPE sets a natural limit to the duration of optical solitons.
At half maximum the shortest duration contains approximately
1.5 optical cycles of the pulse field.

That appearance of the cusp singularity seems to be a
universal mathematical feature that governs the shortest soliton
both in optical systems, and even beyond optics, for the
following reasons. First, the same singular behavior of ultra-
short solitons has been found in alternative complex SPE’s,
both for first- and second order propagation equations [10].
Second, it was found that if the standard NLSE is generalized
by accounting for amplitude-dependent group velocity, the
corresponding solitary solution readily shows cusp formation
for too short pulses [11]. Third, optical cusp solitons closely
resemble singular solutions that appear in seemingly different

physical systems, e.g., cuspons and peakons that appear in
Camassa Holm equation for shallow water waves. Last, but
not least, the appearance of all singular solutions in the above
examples can be described by the same mathematical structure.
Namely, the solitary solution f of the SPE in question appears
as a homoclinic trajectory of the reduced dynamical system

(f 0)2 +2U(f ,P) = const,

where the effective potential U(f ,P) depends on the choice of
the SPE and, most important, on the pulse duration P. As to
the shortest duration, U(f ,P) transforms in an infinite potential
well (red line in Fig. 1a). The corresponding solution for f is
still continuous but has different values of f 0 for the incoming
and outgoing branches of the homoclinic trajectory, which
provides a cusp solution. Remarkably, the fundamental soliton
of the simplest NLSE with the same duration still reproduces
the shape of the limiting soliton reasonably well, except the
cusp at the top (Fig. 1b). However, the shortest duration can
be obtained only from the singular solution of the SPE.
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Fig. 1. (a) Effective potentials calculated for different durations of optical
solitons. Green: regular potential that yields a typical ultrashort soliton. Red:
limiting case (infinite potential wall) resulting in an unphysical cusp. Brown:
too short durations lead to singularities, solitons do not longer exist [10].
(b) Shortest soliton (red) for Drude dispersion, versus standard fundamental
soliton (black line), see [2].

Cusp existence was also confirmed in a general setting by
direct numerical solution of Maxwell equations for several
dispersion laws [2], using a non-envelope bidirectional non-
linear wave equation with cubic nonlinearity. A typical close-
to-cusp-but-still-regular solution is shown in Fig. 1b, similar to
analytical solutions resulting from the SPEs. A special feature
is the decay of the spectral power of cusp solutions inversely
proportional to the fourth degree of frequency [3].

II. PULSE INTERACTION

An optical pulse that propagates along a fiber with Kerr
nonlinearity, creates a localized nonlinear perturbation dn of
the refractive index. For instance, a 3-cycle (half-maximum)
soliton in fused silica at 1.55 µm provides dn ⇡ 10�4. A
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co-propagating pulse would usually pass the perturbation
unchanged, under favorable conditions it is scattered how-
ever [12]. A suitable group velocity matched pump wave may
even be perfectly reflected, thereby undergoing a pronounced
frequency change [13]. The reflected wave propagates in the
same direction as the soliton but with a different velocity due
to frequency shift, as schematically shown in Fig. 2.
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Fig. 2. (a) fiber soliton (red) and dispersive wave (DW) packet (dark blue)
effectively interact with each other if they co-propagate with only slightly
different velocities. (b) a new frequency-shifted DW (light blue) appears after
reflection. The frequency change wi 7! wo indicates energy transmission, the
soliton gets pumped and propagates with changed peak power and shifted
frequency ws 7! ws +n . (c) Both wi and wo are close to the velocity matched
frequency wr with b 0(ws) = b 0(wr).

A frequency down-shift of the scattered wave wi 7! wo in-
dicates an energy exchange: the pump feeds the soliton, which
increases in peak power and also experiences a frequency
shift ws 7! ws + n . Thus a soliton can be manipulated by a
carefully chosen pump wave, which should be a low-amplitude
group-velocity matched continuous dispersive wave (DW).
For instance, the soliton can be switched on and off [12],
trapped [14], and even used to mimic event horizons [15].
We present analytic theory [4] of interactions like the one
shown in Fig. 3, quantify optimal pulse parameters [5], and
demonstrate how optical event horizons can be used to com-
pensate the Raman effect in a stable manner (Fig. 4, [6]).
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Fig. 3. (a) an exemplary scattering of the DW (left pulse) at a soliton (right
pulse) in the space-time domain. (b) spectral density for the soliton. (c) spectral
density for the DW. See [4] for details.
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Fig. 4. Energy density plot of the incoming/scattered DW (interference
pattern at the beating frequency wi �wo on the left side of each panel) and a
fundamental soliton with initially zero delay (soliton parameters are identical
to that in Fig. 3). SSFS compensation by DW scattering may be (a) unstable
or (b) stable. The adiabatic approach to such soliton-DW interactions makes it
possible to address the stability problem without tedious numerical calculations
of pulse propagation. See [6] for details.

ACKNOWLEDGMENT

U.B. acknowledges support by the German Research Foun-
dation in the framework of the Collaborative Research Center
787 Semiconductor Nanophotonics under project B5. Sh.A.
acknowledges support of the German Research Foundation
under Project 389251150.

REFERENCES

[1] S. Amiranashvili, U. Bandelow, and A. Mielke, “Calculation of ultra-
short pulse propagation based on rational approximations for medium
dispersion,” Opt. Quantum Electron., vol. 44, no. 3, pp. 241–246, 2012.

[2] S. Amiranashvili, U. Bandelow, and N. Akhmediev, “Few-cycle optical
solitary waves in nonlinear dispersive media,” Phys. Rev. A, vol. 87,
no. 1, p. 013805, 2013.

[3] ——, “Spectral properties of limiting solitons in optical fibers,” Optics

Express, vol. 22, no. 24, pp. 30 251–30 256, 2014.
[4] S. Pickartz, U. Bandelow, and S. Amiranashvili, “Adiabatic theory of

solitons fed by dispersive waves,” Phys. Rev. A, vol. 94, p. 033811,
2016.

[5] ——, “Efficient all-optical control of solitons,” Opt Quant Electron,
vol. 48, pp. 503:1–7, 2016.

[6] ——, “Asymptotically stable compensation of soliton self-frequency
shift,” Opt. Lett., vol. 42, no. 7, pp. 1416–1419, 2017.
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