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Abstract—The light-matter interaction for the case of stimu-
lated intersubband emission was included through appropriate
selfenergy into nonequilibrium Green’s function formalism to
simulate electrical and optical characteristics of quantum cascade
laser above the lasing threshold.
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I. INTRODUCTION

For optoelectronic devices, the light-matter interaction is
essential. In nonequilibrium Green’s function (NEGF) for-
malism [1], it can be included either through appropriate
selfenergy [2–4] or time-dependent (ac) potential incorporated
into device Hamiltonian [5]. For unipolar devices, utilizing
intersubband transitions, only the "ac" approach was used [5–
7]. This approach requires solving the full set of NEGF equa-
tions for several higher harmonic of fundamental frequency
what generates huge numerical load. On the contrary, the
selfenergy approach generates only little additional load as
the light-matter selfenergy (like other selfenergies) is included
into NEGF equations for the steady state. In this paper, the
selfenergy approach is used to perform simulations of quantum
cascade laser (QCL).

II. MODEL

In QCLs, light is emitted due to intersubband transitions oc-
curring in the conduction band. Therefore, one-band effective
mass Hamiltonian, parametrized for the in-plane momentum
𝑘, provides the sufficient description [8]:
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where 𝑧 is the coordinate along the transport direction and
other symbols have the usual meaning. In (1), mixing with
valence bands is taken into account by the use of energy (𝐸)
dependent effective mass 𝑚. The potential 𝑉 (𝑧) includes both
the variation of the conduction band edge and the Hartree term
of the electron-electron interaction. For such a formulation, the
Green’s functions have 4 arguments, i.e., 𝐺(𝑧, 𝑧′, 𝐸, 𝑘). The
calculations are made in the position basis: the base vectors
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are defined by the points discretizing the Hamiltonian (1). As
QCL core is periodic, the structure subjected to calculations
is limited to a bit more than one QCL period connected to
the leads that reliable imitate device periodicity [8, 9]. The
formulations for scattering self-energies were taken from [1]
for LO-phonon, interface roughness, ionized impurity, and
alloy disorder scatterings, whereas for the acoustic phonons
we use the energy-averaged approximation described in [8].

In QCLs, the radiative intersubband transitions are stimu-
lated by the 𝑧-polarized light propagating along the 𝑦-axis. The
electromagnetic field can be described in terms of the vector
potential A = [0 0 𝐴𝑧] which can be related to photon flux Φ
through the Poynting vector 𝑆 = Φ𝐸𝛾 = 2𝑛𝑐𝜖0𝐸

2
𝛾ℏ

−2∣𝐴𝑧∣2,
where 𝑛 is material refractive index. To the first order in 𝐴𝑧 ,
the perturbation theory gives the interaction Hamiltonian [2]:

𝐻1 =
𝑒i

ℏ
𝐴𝑧[𝐻, 𝑧], (2)

which can be used in the derivation of selfenergies Σ<,R: for
monochromatic field with the photon energy 𝐸𝛾 = ℎ𝜈

Σ<,R(𝑧, 𝑧′, 𝐸, 𝑘) =

∫∫
𝑑𝑧𝑑𝑧′𝐻1(𝑧)[𝐺

<,R(𝑧, 𝑧′, 𝐸+𝐸𝛾 , 𝑘) (3)

+𝐺<,R(𝑧, 𝑧′, 𝐸 − 𝐸𝛾 , 𝑘)𝐻1(𝑧
′)].

The above formulation differs from that in [2] in that
the terms responsible for spontaneous emission are omitted.
The selfenergies were included into the steady state NEGF
formalism like other selfenergies: the Dyson and Keldysh
equations were iterated until the selfconsistent solution was
achieved. Then, the gain/absorption was calculated from the
linear response to a small ac field perturbation, like in [10].

III. RESULTS

The model described in Sec. II was tested on GaAs/AlGaAs
QCL described in [12]. The self-consistent band structure of
one device period, laser levels, and the corresponding wave-
functions are shown in Fig. 1. The full NEGF-based analysis
of the electronic transport in this device, however without
electron-photon interaction, has already been presented in [11].
The results that include this interaction are presented in Figs. 2
and 3. In Fig. 2, the calculated gain-flux and current-flux
dependencies are compared with the relations predicted by the
2-state rate equations model [6, 7]:
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𝑔(Φ) =
𝑔(0)

1 + 𝑒𝑔0𝑑Φ
, 𝐽(Φ) = 𝐽(0) + 𝑒𝑑𝑔(Φ)Φ, (4)

where 𝑔 is the gain at energy 𝐸𝛾 , 𝐽 is the current density, 𝑔0
is the gain coefficient, and 𝑑 is the period length. In case of
the gain, the agreement with semi-classical result is excellent
when the value 𝑔0 is taken from the calculations in the off
state (see Fig. 3). For the current density, the agreement is
poorer, but still very good: note that no fitting parameters
were used when drawing the lines. The agreement found in
Fig. 2 proves that the calculations of the optical gain (ac field
perturbation) are consistent with the calculations of electronic
transport (scattering electron-photon selfenergies).
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Figure 1. Conduction band profile, laser (3, 2) and depopulating (1) levels
wavefunctions (modulus squared) and electron density in units eV−1nm−3

(contour color plot) calculated with the NEGF method.
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Figure 2. (left) Gain spectra for the increasing photon flux (up-to-down) set
at ℎ𝜈 = 𝐸𝛾 = 126 meV. (right) Gain at ℎ𝜈 = 𝐸𝛾 and current density as
a function of photon flux set at ℎ𝜈 = 𝐸𝛾 = 126 meV calculated with the
NEGF method (symbols). Lines in the right plot are drawn according to (4).

The calculations have been done for the number of bias
voltages with electron-photon interaction turn off or on. For
the latter case, the monochromatic field with energy 𝐸𝛾 =
0.126 eV was used, and flux Φ was increased until the gain
was clamped to its threshold value 𝑔th

∼= 60 cm−1 described
by the total losses [12]. Then, the light power leaving the
cavity through one of the mirrors was related to Φ as [6, 7]:

𝑃 = (1−𝑅)𝑁𝑝𝑑Φ𝐸𝛾 , (5)
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Figure 3. (left) Current-voltage and light-current characteristics calculated
with or without electron-photon selfenergies included into NEGF formalism;
(right) gain peak for these two cases. The slope of the line approximating the
data in the off state is 𝑔0 = 12.9 cm/kA. Lines show experimental data [12].

where 𝑅 = 0.27 is the facet reflectivity and 𝑁𝑝 is the number
of periods in a cascade. Results are shown in Fig. 3 and
compared with the experimental data of [12]. The agreement
is not bad, especially if we take into account that the only
adjustable parameter of the model is the roughness of the inter-
faces which was assumed as 1

3 of the monolayer spacing. The
observed differences are probably due to the overestimated
losses assumed in the model as well as the doping of the
core in the real samples that might have been higher than the
nominal value 4× 1017cm−3 assumed in the simulations.
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