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Abstract—Convolutional neural networks were applied to 
sub-micron-resolution optical coherence tomography images of 
the human skin for anatomical segmentation. The main layers 
of skin were discerned with an average 90% accuracy, which 
we believe to possess potential in the assessment of skin health. 
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I. INTRODUCTION 

The morphology of the dermal-epidermal junction (DEJ) 
has been proven to serve as an indicator of ageing [1] and 
cancer staging [2, 3]. Hence, if a machine learning algorithm 
is able to detect this region, it is highly probable that it will       
also discern between healthy and cancerous tissue or assess 
on the state of the skin for different pathologies. 

Medical imaging techniques present a trade-off between 
resolution and imaging depth. Micrometer resolution has 
been achieved by different techniques, such as confocal 
microscopy and electron microscopy, but typical imaging 
depths are less than 100 µm and axial resolution is poor [4]. 
These techniques also require the excision of the tissue, 
which can result in complications due to scarring, bleeding 
and infections. Optical coherence tomography (OCT) offers 
an imaging depth of several hundred micrometers, while 
having sub-micron resolution. Moreover, it is able to perform 
in vivo measurements, reducing diagnose time and enabling 
physicians to perform multiple measurements in situ. 

Machine learning has been highly successful in many 
computer vision applications [5], most of them using 
convolutional neural networks (CNNs). This type of neural 
network requires fewer variables than traditional “fully-
connected” neural networks, which makes it possible to 
process larger images.  

We have designed a fully convolutional network (FCN) 
capable of segmenting OCT images of human skin into 
different layers, which can help diagnose of skin diseases. 

II. METHODOLOGY 

A. Imaging system and ground truth acquisition 
The training images were obtained using our home-made 

Ce:YAG Mirau-based full-field OCT system [6], which 
delivers an isotropic resolution of 0.9µm down to a depth of 
200 µm, showing both papillary dermis and epidermis. 
Doctors were given four 3D tomograms, each with 439 
images, to delineate the DEJ as a 5-µm band using ImageJ 
software [7]. The remaining layers (dermis, epidermis, glass 
and glycerol) were segmented by semi-automated macros 
and revised by experienced researchers in our laboratory.  

B. Design of the neural network and training configuration 
We used a customized implementation of U-Net [8], 

implemented in Keras [9] with TensorFlow backend [10], 
adapting the input and output sizes, as well as different 

hyperparameters, as shown in Fig.1. Categorical cross-
entropy is used as the loss function, where different weights 
were assigned to each layer, compensating their differences 
in total area. This way, the loss corresponding to pixels in the 
DEJ layers is 20 times higher than dermis and epidermis, 
while glycerol and glass pixels are 10 times higher. 

The training was performed on the Taiwan GPU Cloud 
Center using 1 GPU (NVIDIA Tesla V100) and 8 CPUs 
(Intel Xeon E5) for 900 epochs, which took approximately 
30 hours of computing time. The training set is composed of 
3073 images of size 224×512 pixels from 4 different 
tomograms, while the test set consists of 439 similar images. 

III. RESULTS 

We have obtained an average accuracy of 90% for both 
training and testing sets. The training was stopped because of 
the noise of the validation accuracy, probably due to the few 
segmented tomograms available. 

Fig. 2 shows the normalized confusion matrix for the test 
set. The glass and glycerol classes have 100% and 96% 
accuracy, respectively, similar to human performance, while 
dermis (88%), epidermis (90%) and DEJ (91%) also show a 
high accuracy. 

IV. DISCUSSION 

Fig. 3 shows the original OCT images, the doctors’ 
segmentations and the predicted ones performed by our U-
Net implementation. We have selected the most relevant 
ones to comment on them. 

Most of the predicted results present perfect glass 
segmentation and it is nearly perfect for glycerol. It is 
remarkable that none of the bright spots on the epidermis 
have been segmented as glass, which induces us to think that 
the system is not only relying on the intensity values. Dermis 
and epidermis are also well placed by our network. The 
network has “learned” that epidermis lies right below the 
glass and glycerol layers. 

Fig.1: Schematic of the U-Net used in the simulations 

NUSOD 2018

31978-1-5386-5599-3/18/$31.00 ©2018 IEEE



 The DEJ is, for most of the images, conformal to the 
doctors’ segmentations. However, it is approximately double 
as thick. This is a consequence of the high weight given to 
this layer with respect to the other two: when the network 
tries to minimize the loss function, the misclassification 
penalty for a pixel is higher when the right label is DEJ as 
when it is dermis or epidermis, so by creating a thicker band, 
the average result will have a smaller loss function. In fact, in 
the first epochs of the training, the DEJ covered, 
approximately, one quarter of the image height, but it is then 
thinned as the network refines the filters’ weights. 

Another interesting feature is the DEJ island-like 
structures in Figs. 3.a and 3.b. There are two main reasons 
for this result. Firstly, our OCT images present complex 
structures that have not been segmented, such as Merkel or 
Langerhans cells, hair follicles and sweat pores, which 
present a high contrast change and might be confused by the 
system as the basal layer. Secondly, some of the areas in the 
edges present very low intensity values, making it difficult 
for the doctors to segment those areas with confidence. 

Other problems arise in low intensity areas, where the 
predicted DEJ present discontinuities, as shown in Fig. 3.d. 
The system has not learned this property of skin, however, 
we expect to overcome this issue by training for a longer 
time, adjusting the network hyperparameters and including 
more training examples. 

Lastly, it is interesting to observe the role assigned to the 
filters in the last layers of the network. Here we have six 
filters that can be better understood by finding the images 
that maximize their outputs. This was done by inputting 
random images and applying gradient ascent [11]. Fig. 4 
shows the input images that maximize the last five filters of 
the network. We can observe a random pattern at specific 
locations of each image, suggesting that the network will not 
look for such layers at these areas. In fact, when we look at 

the prediction of the generated images (Fig. 4, bottom row) 
we see that these regions coincide with the segmentation 
assigned by the network to a wrong label. As expected, 
dermis and DEJ are not observed at shallow depths, while 
epidermis and glycerol are not found at deep regions. 

However, despite the high accuracy obtained by the glass 
segmentation, the result for its associated filter does not have 
a clear interpretation (Fig.4.e). The generated input image 
looks noisy and its segmentation does not return a glass 
label. Nevertheless, we can observe a horizontal layered 
pattern with the expected order: dermis, DEJ and epidermis, 
from bottom to top. 

V. CONCLUSIONS 

We have demonstrated the feasibility of skin layers’ 
segmentation by an FCN. Several issues are still to be 
resolved in order to increase the accuracy. However, we are 
still in a development phase where we are trying different 
network parameters in order to find an optimal configuration. 
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Fig 2: Normalized confusion matrix for the test set respect to each 
of the layers. 

Fig. 3: Input OCT images of the skin, doctors’ segmentations and 
predictions. Segmentation layers: dermis (blue), DEJ (dark blue), 

epidermis (green), glycerol (light green) and glass (yellow). 

Figure 4: Input images maximizing last layer’s output in the network (top) and their segmentation by the network (bottom). 
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