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Abstract
Numerical simulation and machine learning represent opposite approaches to computa-
tional analysis of the real world, deductive vs. inductive. However, both methods suffer 
from various uncertainties and even their combination often fails to link theory and reality. 
Focusing on GaN-based light-emitting diode (LED) design optimization, this paper evalu-
ates examples of simulation-based machine learning from a physics point of view. Strate-
gies are suggested for achieving more realistic predictions.
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Computer simulations embed theoretical models into a practical environment (Piprek 
2017). This enables a realistic test of such models by comparing calculated results to meas-
urements. Simulations can thereby help explain experimental results that would  other-
wise be hard to understand. Simulations also allow for performance predictions for novel 
devices. However, it is well known that initial simulation results hardly ever agree with 
measurements. In other words, computer simulations often fail to represent the real world 
and create a virtual reality instead in which artificial effects may happen (Fig. 1). This is 
not surprising as mathematical models always simplify reality. There are different levels of 
simplification, from short analytical formulas to complex systems of equations, which are 
all based on specific assumptions about relevant physical processes. Certain assumptions 
may be inappropriate in a practical situation. Contradicting assumptions may even deliver 
almost identical results (Piprek 2015). Another problem is the employment of unrealistic 
material parameters. Published values of such parameters often vary substantially (Müller 
et al. 2014; Piprek et al. 2015). Careful adjustments of computer simulations are required 
to find agreement between theory and reality (Piprek et al. 2002; Wasmer et al. 2017).
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Machine learning, on the other hand, usually collects data in the real world and per-
forms statistical analyses (Fig. 1). This is especially valuable when the amount of data 
is very large and hard to digest. Deep learning is currently the most popular machine 
learning method (LeCunn et al. 2015) and it is based on multi-layered artificial neural 
networks (ANNs). Many data sets are needed to train an ANN. Due to scarcity and scat-
ter of real-world data, experimental data collection is often replaced by computer simu-
lations based on established theories. Such physics-based machine learning methods are 
increasingly utilized in materials science (Schmidt et  al. 2019). Various semiconduc-
tor material systems are explored and optimized for applications in optoelectronics (Lu 
et al. 2020; Liu et al. 2020; Luo et al. 2020). Simulation-based machine learning is also 
popular with photonic devices (Molesky et al. 2018; Ma et al. 2020; Genty et al. 2020) 
utilizing solutions to Maxwell’s equations that involve only few material parameters. 
Compared to photonics, optoelectronic devices are much more complex as they combine 
optical, electronic, and thermal processes. As indicated above, computer simulations 
of such devices not only involve various modeling approximations in need of valida-
tion, but also many uncertain material parameters. Simulation-based machine learning 
has been applied to various optoelectronic devices (Cicic and Tomic 2019; Hakimian 
et al. 2020; Ma and Li 2020; Wagner-Mohnsen and Altermatt 2020; Razzaq et al. 2020; 
Majeed et  al. 2020). Light-emitting diodes (LEDs) in particular have been a target of 
machine learning (Zhu et al. 2012; Kim et al. 2015; Rouet-Leduc et al. 2016; Janai et al. 
2018; Fan et al. 2020; Ibrahim et al. 2020).

In the following, we evaluate a few of these machine-learning applications that are 
focused on GaN-based LEDs. These blue light emitters have been receiving great atten-
tion in recent years due to their widespread utilization in lighting, displays and other 
fields (Wasisto et al. 2019). Countless and partially contradicting GaN-LED simulation 
studies have been published, with the LED efficiency being in the center of interest in 
most cases (Piprek 2010; Verzellesi et al. 2013; Usman et al. 2020). Not surprisingly, 
one of the first machine learning applications to GaN-LEDs is focused on efficiency 
improvements (Zhu et al. 2012). The authors employ a genetic algorithm to select com-
binations of basic semiconductor layer structures with random material composition, 
thickness, and doping. Utilizing a Matlab-based LED model, the design is successively 
improved to maximize an efficiency-related fitness function. After about 500 genera-
tions with a typical population size of 1000, an optimum active region doping scheme is 
identified that enhances the efficiency by limiting the electron leakage from the InGaN 
quantum wells (QWs). A further leakage reduction is discovered for a novel design of 

Fig. 1  Deductive versus induc-
tive method
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the electron blocking layer (EBL). The EBL is split up into 10 individual 3 nm-thick 
layers with different composition. However, this optimization strategy ignores the strong 
influence of band-offset and EBL doping reported earlier (Piprek and Li 2010).

EBL doping optimization is included in a follow-up paper which now splits the EBL 
into 1 nm-thin AlGaInN sub-layers of different compositions and doping densities (Kim 
et al. 2015). The genetic algorithm identifies an optimum EBL design with uniform Mg 
doping density of  1019   cm−3, which is the maximum of the doping range considered, in 
agreement with earlier findings (Piprek and Li 2010). An internal quantum efficiency 
(IQE) of 0.59 is predicted for the optimized LED design at 200 A/cm2 current density, 
which is a significant improvement compared to IQE = 0.43 with the reference LED design. 
IQE represents the ratio between the number of photons generated inside the QWs to the 
number of electrons injected into the device. It thereby accounts for carrier losses caused 
by non-radiative recombination or leakage (Piprek 2010).

For evaluation and validation, we simulate the same LED structures utilizing APSYS by 
Crosslight Software. This widely used code self-consistently computes carrier transport, 
the wurtzite electron band structure of strained QWs, and photon emission. Schrödinger 
and Poisson equations are solved iteratively in order to account for the QW deformation 
with changing device bias (quantum-confined Stark effect). The transport model includes 
drift and diffusion of electrons and holes, Fermi statistics, built-in polarization, and thermi-
onic emission at hetero-interfaces, as well as all relevant radiative and non-radiative recom-
bination mechanisms. In agreement with the reference papers, self-heating is excluded 
from our study. A more detailed discussion of LED device models is published elsewhere 
(Piprek and Li 2005; Piprek 2020). The layer structure of the reference LED is given in 
Table 1 (Kim et al. 2015). The vertical band gap profiles are plotted in Fig. 2 for the refer-
ence LED (red line) and for two optimized designs.

The calculated LED efficiency is known to strongly depend on material parameters such 
as Auger recombination coefficient (Piprek et al. 2015), built-in polarization (Piprek and 
Li 2013), band offset at hetero-junctions (Piprek and Li 2013), and hole mobility, none of 
which is specified by Kim et al. (2015). In order to reproduce the reference IQE character-
istic, we here assume an Auger coefficient of C =  10–30  cm6/s as well as a conduction band 

Table 1  Layer structure of the 
reference LED (EBL—electron 
blocking layer)

Layer Composition Doping  (cm−3) Thickness (nm)

p-cladding GaN:Mg 1 ×  1019 200
p-EBL Al0.19Ga0.81 N:Mg 1 ×  1019 20
p-injector GaN:Mg 1 ×  1019 4
spacer GaN 6
quantum well In0.15Ga0.85 N 3
n-barrier GaN:Si 5 ×  1018 10
quantum well In0.15Ga0.85 N 3
n-barrier GaN:Si 5 ×  1018 10
quantum well In0.15Ga0.85 N 3
n-barrier GaN:Si 5 ×  1018 10
quantum well In0.15Ga0.85 N 3
n-barrier GaN:Si 5 ×  1018 10
quantum well In0.15Ga0.85 N 3
n-cladding GaN:Si 7 ×  1018 200
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offset ratio of 0.6 and a polarization screening factor of 0.5, all within the range of pub-
lished values. However, the hole mobility is seldom mentioned. Lower hole mobility leads 
to enhanced electron leakage into the p-doped layers, thereby reducing the efficiency. The 
solid lines in Fig. 3 demonstrate the influence of the hole mobility on the simulated IQE 
characteristic. A typical hole mobility of 1  cm2/Vs produces about 1% electron leakage at 
200 A/cm2 current density (blue line in Fig. 3). A 10-times lower hole mobility gives 25% 
leakage and it moves our results close to the IQE reported by Kim et al. (2015) (red line in 
Fig. 3). The optimized LED structure promises improved electron blocking, as suggested 
by the blue bandgap profile in Fig. 2. Indeed, this LED design produces a somewhat higher 
efficiency by reducing the electron leakage to 19% (red dashed line in Fig.  3). But we 
are unable to confirm the complete leakage elimination or the strong efficiency improve-
ment predicted in the reference paper, even after testing alternative parameter combina-
tions. Likely reasons are differences between other material parameters and/or between the 
underlying models. As illustrated in Fig. 3, modeling uncertainties produce a substantial 

Fig. 2  Comparison of LED band 
gap profiles (MQW—multiple 
quantum well, EBL—electron 
blocking layer)
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error range in the simulation, which is larger than the efficiency improvement achieved by 
the design optimization at 200 A/cm2. Simulation models and parameters should be first 
calibrated by comparison to relevant measurements of the reference device (Piprek et al. 
2002). This is often a time-consuming process but it is a prerequisite for reliable perfor-
mance predictions.

However, such continuum models ignore the atomistic structure of very thin layers. The 
optimized LED structure of Kim et al. (2015) features a 1 nm thick AlGaInN layer with 
only 5% indium content inside the EBL (blue dashed line in Fig. 2), for which the average 
lateral distance of indium atoms is substantially larger than the layer thickness. In other 
words, the assumption of an uniform energy barrier is incorrect. What is more, such thin 
barrier enables carrier tunneling which is not considered in these simulations. Thus, the 
machine learning results clearly overstep the validity limits of the underlying LED simula-
tions. Design space boundaries should be carefully evaluated and strictly observed.

The above GaN-LED design optimization is based on the popular assumption that elec-
tron leakage is the main reason for the efficiency reduction with rising current. However, 
other authors blame QW Auger recombination for this efficiency droop, which can be 
equally validated by LED simulations, even for the same device structure (Piprek 2015). 
Both carrier loss mechanisms can be reduced by lowering the QW carrier density. Rouet-
Leduc et al. (2016) published such GaN-LED design optimization based on active machine 
learning, but without revealing much detail about LED parameters. Utilizing the APSYS 
software, the authors successively perform about 1000 simulations by varying the com-
position of their five InGaN quantum wells independently. The QW barrier composition 
is also changed and the QW thickness is adjusted to maintain a nearly constant emission 
wavelength. This strategy eventually leads to an IQE improvement from 0.55 to 0.78 at 
75 A/cm2 current density. Their machine learning algorithm finds the highest efficiency 
for widened QWs with about 11% indium sandwiched between InGaN barriers with 5% 
indium. This design optimization is quite intuitive as thicker QWs reduce the QW carrier 
density and shallower QWs shrink the built-in polarization field that separates electrons 
and holes inside the QW.

For evaluation, we apply this optimization strategy to the same LED reference structure 
simulated above (Table 1). Our IQE of 0.58 at 75 A/cm2 (Fig. 4) is close to the value 0.55 

Fig. 4  LED efficiency simulation 
of the design changes proposed 
by Rouet-Leduc et al. (2016)
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reported by Rouet-Leduc et al. (2016) for their reference LED. The proposed addition of 
5% indium to the QW barriers results in the dash-dot line in Fig. 4. The efficiency at 75 
A/cm2 drops due to enhanced electron leakage enabled by the lower QW barriers. Widen-
ing the QW from 3 to 5 nm causes a rising efficiency as the QW carrier density is reduced 
(dash-dot-dot line in Fig. 4). The final reduction of the QW indium content to 11% lowers 
the efficiency again due to stronger leakage from shallow QWs, despite a weaker polariza-
tion (dashed line in Fig. 4). The resulting band gap profile is shown as green line in Fig. 2. 
While the proposed design changes slightly enhance the peak efficiency at low current, 
IQE remains lower than with the reference LED at the target current density of operation 
(75 A/cm2, see Fig. 4). Obviously, the success of this design optimization depends on more 
parameters than those considered by the authors. They skipped an essential step, namely 
the identification of the dominating loss mechanism in their simulation, which needs to be 
suppressed in the optimized design. Simulations should always investigate internal device 
physics first before developing design optimization strategies.

Rouet-Leduc (2017) applied similar machine learning methods to the fitting of simu-
lated efficiency characteristics to a measured one. This approach accounts for well-known 
uncertainties of key material parameters: built-in polarization, recombination coefficients, 
QW carrier scattering time, and the exchange coefficient controlling the band-gap shrink-
age with rising QW carrier density. Based on a large set of known simulation results for 
random material parameters, active machine learning is used to select material parameter 
sets for new simulations, thereby successively increasing the available data base. Reasona-
ble agreement between measurement and simulation is achieved after about 300 iterations. 
While this is an important and valuable approach, there are two main shortcomings. First, 
the final fit parameters are not listed and discussed, i.e., this machine learning demonstra-
tion does not improve our understanding of device physics. Second, the time-consuming 
generation of hundreds of APSYS simulation results needs to start over for any design 
modification. A fitting procedure based on physical insight is probably faster and certainly 
more educating.

These examples demonstrate that simulation-based machine learning is extremely chal-
lenging due to the complexity of optoelectronic device physics. Reliable performance pre-
dictions are impossible without thorough validation of simulation models, including mate-
rial parameters, and strict observance of design space limits. We here focus on problems 
related to LED physics and simulation, machine learning pitfalls are investigated elsewhere 
(Lipton and Steinhardt 2019; Riley 2019; Kailkhura et al. 2019; Zunger 2019; Chugh et al. 
2019; Heaven 2019). New scientific discoveries are unlikely as machine learning usually 
interpolates between known numerical results. This dilemma may be addressed in various 
ways, some of which are outlined in the following. The key element of such approaches is 
the involvement of experimental data.

Assumptions about the simulated device design are usually based on technological 
intentions and not on the actual structure fabricated, hindering a comparison between 
simulation and experiment. Typical examples are layer thickness, composition, and doping 
profile. Direct measurements of such structural data should be preferred in the simulation 
setup, whenever possible.

Material parameters are a main source of device simulation uncertainties. Big-data 
materials science could provide valuable input. For instance, the Materials Genome Ini-
tiative demonstrates a synergetic combination of theoretical models, computational meth-
ods, and experimental procedures (de Pablo et  al. 2019; Lookman et  al. 2019). Another 
example is the FAIR Data Initiative (Draxl and Scheffler 2019). Such activities hopefully 
lead to more reliable models for key material properties relevant to optoelectronic device 
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simulations. High-end models for sophisticated properties such as optical gain and absorp-
tion could be calculated separately and then imported into the full device simulation via 
ANN or other suitable means (Piprek et al. 2005). Parameter uncertainties should be con-
sidered in the simulation to enable a much-needed establishment of error ranges for calcu-
lated results (Piprek 2019).

The initial disagreement between simulation results and performance measurements is 
often eliminated by adjusting material parameters in the model (Piprek et al. 2002). Each 
parameter usually requires a different measurement for calibration. The industrial fabrica-
tion of optoelectronic devices typically includes the automatic data acquisition from vari-
ous measurements (Altermatt et  al. 2018). Some values scatter significantly, which may 
be related to process variations (Wasmer and Klöter 2019). Machine learning from meas-
ured data can be used to analyze such fluctuations, to extract material parameters (Majeed 
et al. 2020), or to select the experimental characteristics most appropriate for evaluating 
and calibrating simulations. Simulation-based digital twins of fabricated devices can pro-
vide a deeper understanding of how process variations influence device performance (Ibra-
him et al. 2020; Wagner-Mohnsen and Altermatt 2020). Generative adversarial networks 
(GANs) may be able to combine calculated and measured data in order to achieve more 
realistic predictions (Jiang et al. 2019; Yang et al. 2020; Kudyshev et al. 2021).

In summary, simulation-based machine learning is extremely challenging due to the 
complexity of optoelectronic device physics, which should be considered carefully. Simu-
lations always simplify and potentially falsify reality. Without experimental validation of 
models and parameters, predictions of optoelectronic device performance remain unreli-
able. Employment of measured data in the computational analysis helps reducing the gap 
between theory and reality. Methods and results should be documented and scrutinized in 
detail to make publications credible, reproducible, and actionable.
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