Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers

P.J. Bream, S. Sujecki and E.C. Larkins

School of Electrical and Electronic Engineering
University of Nottingham; Nottingham NG7 2RD; UK

Email: eexpjb1@nottingham.ac.uk
Presentation Outline

- Fourier series representation of valence band asymmetries
- Carrier energy density of states
- Gain spectra
- Dynamic gain model
Quantum well valence band structure – Fourier expansion

- Decoupled 4-band $k.p$ method for <100> and <110> crystal directions
- 1st order Fourier expansion fulfills symmetry and continuity requirements
- Numerically efficient

$$k(\theta) = \frac{k_{<110>} + k_{<100>}}{2} - \frac{k_{<110>} - k_{<100>}}{2} \cos(4\theta)$$
Quantum well valence band structure – local maxima

- Cannot use the Fourier expansion method in this region near local maxima
- 8nm GaAs/Al_{0.2}Ga_{0.8}As QW

\[a = k_{<110>} (E_{<110>_{max}}); b = k_{<100>} (E_{<100>_{max}}); c = k_{<100>}^- (E_{<110>_{max}}); d = k_{<100>}^+ (E_{<110>_{max}}) \]
Quantum well valence band structure – local maxima

- Series of parabolic approximations made to describe energy contours near local valence band maxima
Subband energy density of states

- Non-zero density of states near local maxima
- Location of peak shifted
- Energy density of states up to 10% larger than for circularly symmetric method
Optical energy density of states – carrier energy spread

8nm In$_{0.2}$Ga$_{0.8}$As/Al$_{0.2}$Ga$_{0.8}$As QW

\[E_{\text{photon}} = 1.32\text{eV} \]

\[\Delta E_{\text{carrier}} \approx 0.5\text{meV} \]

8nm GaAs/Al$_{0.2}$Ga$_{0.8}$As QW

\[E_{\text{photon}} = 1.525\text{eV} \]

\[\Delta E_{\text{carrier}} \approx 3.3\text{meV} \]
Gain/absorption

- Carrier energy spread affects matrix element and occupational probability
- Gain calculation requires sum over this range for each photon energy

$$g(E_{ph}) \propto \sum_{cb, vb} \int \int |M_T(E_e, E_h)|^2 \rho_{opt}(E_e, E_h) \left[f_c(E_e) - f_v(E_h) \right] dE_e dE_h$$
Dynamic QW gain model

- States at same energy assumed to have equal occupational probability
 - ultrafast momentum relaxation at given energy
 - implicitly assumed for relaxation rate approximation
 - allows $\int d^2k$ to be replaced by $\int dE$

- Individual intrasubband, intersubband and interband relaxation processes treated separately

- Carrier-carrier scattering modelled using relaxation rate approximation

- Carrier-phonon scattering modelled using phonon emission/absorption
 - Carrier kinetic energy threshold for phonon emission

- Gain and spontaneous emission derived from band structure model
 - linewidth enhancement and bandgap renormalisation omitted for clarity
Dynamic QW gain model – spectral hole burning (case 1)

- 8nm In$_{0.2}$Ga$_{0.8}$As/Al$_{0.2}$Ga$_{0.8}$As QW
- thermal equilibrium carrier concentration of 2.5x1018cm$^{-3}$ at t=0$^-$
- Excited by 15fs gaussian pulse, 1.35eV low energy source (25μJ average)

Spectral hole in electron occupational probability distribution

Circularly symmetric band structure method

Fourier expansion band structure method
Dynamic QW gain model – spectral hole burning (case 1)

Spectral hole in hole occupational probability distribution

Circularly symmetric band structure method

Fourier expansion band structure method
Dynamic QW gain model – spectral hole burning (case 1)

Spectral hole in gain spectrum

Circularly symmetric band structure method
- Affects linewidth enhancement

Fourier expansion band structure method
Dynamic QW gain model – optical pumping (case 2)

- 8nm In$_{0.2}$Ga$_{0.8}$As/Al$_{0.2}$Ga$_{0.8}$As QW
- thermal equilibrium intrinsic carrier concentration at $t=0^-$
- 1MW/cm2 CW pump ($E_{ph}=1.35$eV) introduced at $t=0^+$

Electron probability distribution – Fourier expansion band structure method

- **a** – photon absorption from HH1 to CB1
- **b** – photon absorption from HH2 to CB1
- **c,d** – LO phonon emission replicas
- **e,f** – LO phonon absorption replicas
- **g** – electrons due to carrier-carrier scattering
Dynamic QW gain model – phonon model

- Same QW and starting conditions
- Same optical pump but switched off after $\Delta t=100\text{fs}$
- Fourier expansion band structure method

Electron probability perturbation (phonon relaxation only)

Phonon emission/absorption

Relaxation rate approximation
Summary

- Numerically efficient valence band model
 - Retains important asymmetrical features of full $k.p$ model
 - Affects density of states and dynamic gain

- Dynamic gain model
 - Intrasubband, intersubband, interband processes separate
 - Carrier-phonon scattering modelled using emission/absorption
IS THE RELAXATION RATE APPROXIMATION APPROPRIATE FOR CARRIER-CARRIER SCATTERING?

The authors gratefully acknowledge the EC-IST projects WWW.BRIGHT.EU and FAST ACCESS. P.J. Bream gratefully acknowledges the Engineering and Physical Sciences Research Council, UK.

P.J. Bream, S. Sujecki and E.C. Larkins

NUSOD 2005, Berlin