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Abstract—A subwavelength grating waveguide was numer-
ically analyzed by a 3D finite element method. Waveguide
parameters as core height, width, duty cycle, and index contrast
were varied and its effects investigated. Frequency shifts of the
order of 40THz were obtained for the dispersion relation.

I. INTRODUCTION

A subwavelength grating (SWG) waveguide confines light
through index-guiding, with a core composed of alternating
segments of a material of high refractive index and a material
with lower refractive index. Due to the small size of the
grating pitch, Bragg condition is not satisfied and diffraction
is frustrated [1].

The core height of a SWG waveguide has dimensions
comparable to its width and, because of that, a 2D approach
of the problem might be imprecise and, thus, a 3D analysis
is necessary to investigate the characteristics of these wave-
guides. In this work, we present a 3D finite element method
(FEM) approach to analyze the effects of changes in the SWG
waveguide core height, width, duty cycle, and refractive index
of the core over its modal behavior.

II. FORMULATION

The vector wave equation for the electric field in the
frequency domain is given by

∇×∇× E (r) =
(ω

c

)2

ε (r) E (r), (1)

where r is the position vector, ε(r) is the electric permittivity,
E(r) is the electric field, and c is the speed of light in vacuum.
Assuming a periodic structure, the electric field can be written
as [2] E(r) = u(r)e−jk·r, where k is the wave vector, u(r) is
a periodic function defined as u (r) = u (r + a), and and a
is the lattice vector. Using the given definition of E(r) in (1),
applying Galerkin’s Method [3], and both the Divergence and
Green’s theorems, we have

˚
V

{
∇× u(r) · ∇ × w(r)− jk× u(r) · ∇ × w(r)+

+jk× w(r) · ∇ × u(r) + k× u(r) · k× w(r)
}

dV+

+
‹

S

{
w(r)× [jk× u(r)−∇× u(r)]

}
· ndS =

=
(ω

c

)2
˚

V

ε(r)u(r) · w(r)dV, (2)

where w(r) represents a proper trial function, V is the whole
domain volume, and n is the unit normal vector with respect
to the surface S of the computational domain.

For perfect electric conductor (PEC) and perfect magnetic
conductor (PMC) boundary conditions, the surface integrals
in (2) over the boundaries are zero. For periodic boundary
conditions, the fields on two parallel surfaces at the boundaries
of the domain must be the same and, since the normal vectors
of two parallel surfaces have opposite directions, the surface
integrals of (2) on two parallel surfaces must be zero.

Applying the FEM and considering the aformentioned
boundary conditions, the following eigenvalue problem arises:

[K] {u} =
(ω

c

)2

[M] {u}. (3)

The elementary matrices, related to the global matrices, are
given by:

[Ke]m,n =
˚

Ve

[
∇×We

m · ∇ ×We
n − jk×We

m · ∇ ×We
n+

+jk×We
m + k×We

m · k×We
n

]
dV,

[
Me

m,n

]
=
˚

Ve

We
m ·We

ndV.

where We
ξ is the Whitney basis function. The basis function

associated to the edge ξ that connects the nodes l and j is
given by We

ξ = Ll∇Lj − Lj∇Ll , where Li,j are nodal basis
functions associated to the nodes l and j, respectively, and Ve
is the volume of an element of the discretized domain.
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III. SIMULATION RESULTS

The computational domain simulated had dimensions
x×y×z = 2µm×2µm×0.3µm, and periodic conditions were
applied at the planes z = 0 and z = 0.3 µm. A segmentation
pitch of Λ = 0.3 µm, substrate height of 0.4 µm, and an upper
cladding (air) height of 1.6 µm were employed. The refractive
index of the subtrate and the upper cladding are, respectively,
nSiO2 = 1.44, and nair = 1.0. The waveguide core is made of
either Si (nSi = 3.476) or Si3N4 (nSi3N4 = 1.99).

Figs. 1 and 2 show the dispersion relation of quasi-TE
and quasi-TM modes, respectively, for a core width w = 300
nm, refractive index nSi = 3.476, and different values of core
height (h ) and segment length (l ). The duty cycle of the
waveguide corresponds to the ratio l /Λ. As expected, it is
observed that increasing the waveguide height or width the
dispersion curves of the waveguide suffer a shift to lower
frequencies and the modes become more confined to the
core. Increasing the duty cycle also has the effect of shifting
the dispersion curves to lower frequencies and it decreases
the cutoff frequency of both quasi-TE and quasi-TM modes.
Increasing w from 300 nm to 500 nm in a h = 300 nm and
50% duty cycle waveguide produces a shift of 42 THz for the
quasi-TE mode and 15.7 THz for the quasi-TM mode. For a w
=300 nm and l = 150 nm waveguide, increasing h from 300
nm to 600 nm produces a shift of 14THz for TE polarization
and 46 THz for TM polarization.

Fig. 3 presents the dispersion relation for the quasi-TM
mode (fundamental) for different core materials (Si and
Si3N4), w = 300 nm and l = 150 nm. Reducing the refractive
index of the core has the effect of moving the dispersion curves
to higher frequencies. The variations of the refractive index of
the waveguide core, as well as the variations of waveguide
width could be analyzed by a 2D approach. However, Figs.
1 and 2 show that changes in the SWG waveguide height
can result in big variations in its dispersion relation and,
because the effects of waveguide height are not considered
in a 2D model, in order to properly investigate the waveguide
presented here, a 3D formulation is fundamental.

Fig. 1. Dispersion relation for the quasi-TE mode for w = 300 nm.

Fig. 2. Dispersion relation for the quasi-TM mode for w = 300 nm.

Fig. 3. Dispersion relation for the quasi-TM mode for w = 300 nm and
l = 150 nm.

IV. CONCLUSION

In this paper, the modal characteristics of a SWG waveguide
were analyzed with a 3D finite element method. Frequency
shifts of the order of 40 THz were obtained, by manipulating
the waveguide height, for TM polarization, and waveguide
width, for TE polarization. In conclusion, it is possible to
engineer the effective index not only by varying the duty cycle
of the waveguide and its refractive index, but also by altering
parameters as its height and width. Additionally, the possibility
to produce large frequency shifts in the dispersion relation
makes the SWG waveguide suitable for waveguide coupling,
and, therefore, it represents an important building block for
integrated optics.
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