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Abstract—We discuss models for the propagation of ultrashort
optical pulses through nonlinear dispersive optical media. Start-
ing from a single-mode fiber with fixed radial field structure and
one propagation coordinate we turn to a full three-dimensional
model for propagation of ultrashort pulses in gases.

I. INTRODUCTION

Ultrashort laser pulses have dramatically triggered both fun-
damental and applied science and also created new challenges
from the numerical side. A straightforward solution of the
underlying field and material equations becomes impractical
because too different space- and time-scales are involved, and
the common slowly varying envelope approximation (SVEA)
is no longer valid for ultrashort pulses. Therefore new models
which allow for an efficient numerical treatment have to be
developed [1], [2]. We discuss several such models starting
from the case of a single-mode waveguide in which the
field structure in the radial direction is fixed and only one
propagation coordinate is involved [3]–[7]. Thereafter we
turn to the full three-dimensional modeling of propagation of
ultrashort pulses in gases [8].

II. SCALAR CASE

We start with an exemplary straightforward numerical so-
lution for an ultrashort pulse propagating in a single-mode
fiber [4], Fig. 1. As shown there, the envelope structure is
destroyed in the course of propagation. Another observation
is that the pulse carrier frequency is shifted and therefore not
well defined. Such extreme propagation regimes require more
careful treatment than the traditional envelope description.

In principle, an optical pulse in a single-mode waveguide
can be described by a single field component E(~r, t), which, to
a good approximation, is governed by a scalar wave equation
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where the dispersion operator ε̂ is defined in the frequency
domain (ε̂E)ω = ε(ω)Eω and PNL denotes the nonlinear part
of the induced polarization. We decompose the real-valued
electric field E(~r, t) =

∑
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introduce the analytic signal E for the electric field E = Re[E ]
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Fig. 1. Top: electric field (left) and spectrum (right) of the initial pulse.
Bottom: the same after 10 ps propagation in a bulk fluoride glass. One sees
that the envelope structure of the initial pulse is gradually destroyed in the
course of propagation.
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Equation (2) is similar to the nonlinear Schrödinger equation
(NSE). However, Eq. (2) is completely independent on SVEA.
If the pulse can be characterized by a narrow spectrum around
the carrier frequency ω0 and the corresponding wave vector
β0 = β(ω0), we get the equation(
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which can be related to the 1D NSE for the pulse envelope ψ
by a standard transformation to the pulse-comoving frame

E(~r, t) = R(x, y)ψ(z, τ)ei(β0z−ω0t), τ = t− β1z,

where β1 = β′(ω0) is the reverse group velocity and R(x, y)
is the transverse mode profile [9]. A similar elimination of the
radial coordinates can be appled directly to Eq. (2).

III. VECTORIAL CASE

In a homogeneous medium without (linear) waveguiding
one has to account, in principle, for a fully vectorial descrip-
tion of the electric field ~E, e.g., in the frequency domain by

[~∇2 + β2(ω)] ~Eω = ~Sω. (3)
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The source term ~Sω is given by

~Sω = −µ0ω
2 ~PNL,ω + iµ0ω ~Jω +

1

ε0
~∇
(
ρ− ~∇ · ~Pω

)
, (4)

and takes account of the nonlinear part ~PNL,ω of the total
polarization density ~Pω , the existence of free carriers with
density ρ and current density ~Jω , respectively. The last term
on the r.h.s. of Eq. (4) models vectorial effects which become
important for strongly divergent beams occuring under extreme
focusing conditions. Scalar approximations can be restored
for many experimental situations of interest. Nonlinear self-
focusing effects may increase the optical intensity to trigger
photoionization, which requires to include free carrier terms.
We obtain a set of coupled equations for forward and backward
electric field components

(i∂z ± |kz|)~E±ω = −µ0ω
2

[
1−

~k ⊗ ~k
k2

]
(~PNL,ω + i ~Jω/ω). (5)

As the operator 1 − ~k ⊗ ~k/k2 projects out longitudinal field
components, the evolution of the latter is governed by a source-
free equation, while transverse components are governed by
Eq. (5). Due to the presence of 1−~k⊗~k/k2, this bidirectional
equation requires very costly numerics. The scalar, unidirec-
tional limit ~E → E comparable to Eq. (2) is obtained by letting

~k ⊗ ~k
k2

(~PNL,ω + i ~Jω/ω) ≈ 0, ~E− ≈ 0, (6)

i.e. by neglecting longitudinal field components and decou-
pling orthogonal polarization states, as well as by dropping
backward propagating waves. However, while in the case
Eq. (2) forward propagating field components can be identified
with the positive frequency part of the electric field, this
correspondence breaks down in the non-waveguiding case. It
may be restored under the paraxial approximation k⊥ � kz .
In the unidirectional limit, this definition of directional fields
leads to the forward Maxwell equation (FME) [10], which is
successfully used in the context of femtosecond filamentation.

Fig. 2. Numerical simulation of optical wavebreaking in a femtosecond
filament in argon.

The formation of femtosecond filaments can be observed
when pulse femtosecond laser radiation is loosely focused into
a dielectric medium, provided that the peak optical power P
of the pulses exceeds a certain critical threshold Pthr. These

filaments are narrow, longitudinally extended structures of
dilute plasma and light. While for moderate ratios P/Pthr the
cylindrical symmetry of the input beam can be maintained, an
azimuthal modulation instability leads to multifilamentation
and loss of cylindrical symmetry for higher input powers.
The conservation of cylindrical symmetry leads to a strong
simplification of the required numerics and holds for many
interesting scenarios like pulse self-compression and harmonic
generation within filaments. Furthermore, in these cases it is
often justified to work within the paraxial approximation, such
that the evolution of the electric field is governed by the FME.
Numerically, this is solved using a pseudospectral split-step
scheme, where that part of the propagation equation governed
by the radial component ∆r = 1/r∂rr∂r of the Laplacian is
discretized using an implicit Crank-Nicolson scheme in the
frequency domain, while the nonlinear part of the FME is
evaluated in the time domain, involving the need for repeated
Fourier transforms between temporal and spectral domain
and accounting for aliasing errors. A characteristic radially
symmetric field arising in a simulation of femtosecond fila-
mentation is shown in Fig. (2) [11], which depicts the higher
dimensional analogue of optical wavebreaking occuring during
fiber propagation [9]. It is caused by modulation instability and
is also known as hyperbolic shock-wave formation [12].
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