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Abstract—High index subwavelength waveguides form a new
platform for highly nonlinear photonic devices. This paper
reviews the recent progress in the theory of nonlinear pulse
propagation in these waveguides and highlights the opportunities
that these waveguides have opened up in terms of active photonic
devices.

Recently there has been significant interest in design
and manufacturing of high index subwavelength waveguides
mainly due to their extreme nonlinearity and possible applica-
tions for all optical photonic-chip devices. Examples of these
waveguides include silicon, chalcogenide, or soft glass optical
waveguides, which have formed the base for three active field
of studies; silicon photonics [1], chalcogenide photonics[2],
and soft glass microstructured photonic devices [3].

It has recently been shown that the standard (scalar) theory
of nonlinear pulse propagation (SNPP), which relies on the
well-known scalar Helmholtz equation [4], can not provide
accurate descriptions of nonlinear phenomena in HIS-WGs
[5], [6]. We have recently reported the development of a
vectorial nonlinear pulse propagation (VNPP) model that can
be employed to describe the nonlinear processes in any waveg-
uides, especially in HIS-WGs. The new VNPP indicates that
the propagating modes have significant components along the
direction of propagation, which causes the propagating modes
to be non-transverse. Based on VNPP, new vectorially based
expressions of effective nonlinear coefficient, 𝛾 and Raman
gain, 𝑔𝑅, have been given. Based on these expressions, we
predicted significantly higher values of 𝛾 [5] and 𝑔𝑅 [6] in
the HIS-WG parameter regime compared to those predicted
by SNPP. We attributed these results to the large 𝑧 component
of the propagating modes in the subwavelength regime. Fig.
1 left shows the predictions of VNPP and SNPP for the
nonlinear coefficient, 𝛾, of a nanowire, made of chalcogenide
glasses, for different core diameters. Results in Fig. 1 left
demonstrate that VNPP predicts much higher values for 𝛾,
in the subwavelength regime. In an attempt to confirm these
results, we have been successful in fabricating a suspended
subwavelength-core fiber made of bismuth glass [7]. Using this
fiber, we have not only achieved a world-record nonlinearity
in microstructured optical fibers [8], 𝛾, but also been able to
confirm the prediction of VNPP model for 𝛾 of subwavelength
waveguides [9], see Fig. 1 right.

The new VNPP and vectorial definition of 𝛾, lead to a
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Fig. 1. (Left) 𝛾 for a chalcogenide nanowire as a function of core. (Right) 𝛾
as a function of core diameter for bismuth suspended core fibers. Experimental
results are shown by diamond signs.

new regime of polarization switching which has not been
observed before. According to VNPP, the interactions between
polarizations of waveguide modes can be described by the
following coupled nonlinear Schrödinger equations,
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in which 𝐴𝑗,𝑘 (𝑗, 𝑘 = 1, 2 and 𝑗 ∕= 𝑘) are the amplitudes of the
fields with two polarizations, 𝛽𝑗𝑛 are the n-th order propaga-
tion constants of the two polarizations, Δ𝛽𝑗𝑘 = 𝛽𝑗 −𝛽𝑘 is the
linear birefringence, 𝛾𝑗 , 𝛾𝑐 and 𝛾′

𝑐 are the effective nonlinear
coefficients representing self phase modulation, cross phase
modulation and coherent coupling of the two polarizations,
respectively [4]. The vectorial definitions of 𝛾1, 𝛾2, 𝛾𝑐, and
𝛾′
𝑐 in VNPP model show that in general 𝛾1 ∕= 𝛾2 ∕= 3

2𝛾𝑐 ∕= 3𝛾′
𝑐

which is contrary to what is commonly used in SNPP. SNPP
uses the approximations, 𝛾1 = 𝛾2 = 𝛾, 𝛾𝑐 = 2𝛾′

𝑐 = (2/3)𝛾,
which is based on the fact that (a) the waveguide material
is isotropic and has only electronic-based Kerr nonlinear-
ity, (b) the two polarized modes have same effective mode
area [5]. These approximations work well with low index
contrast and large dimension waveguides but are no longer
appropriate for HIS-WGs. VNPP model and the resultant
inequality 𝛾1 ∕= 𝛾2 ∕= 3

2𝛾𝑐 ∕= 3𝛾′
𝑐 indicate that optical

waveguides with isotropic and electronic-based Kerr nonlinear
materials can also display anisotropic nonlinearity due to the
difference in the mode field distributions and the 𝑧-component
(along the direction of propagation) of eigenmodes of the two
polarizations.
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It can be shown that Eqs. (1) lead to two classes of steady
polarization states, one of which is unstable and results in
polarization switching [10], [11]. We focus on this class of
steady state but unstable solutions which do not exist if 𝛾1 =
𝛾2 = 3/2𝛾𝑐 = 3𝛾′

𝑐, which is the common assumption of SNPP.
For these steady state and unstable solutions, polarizations
with certain initial powers 𝑃1 and 𝑃2 and phase difference
Δ𝜙 do not change as they propagate through a waveguide.
Any small perturbations in powers or phase difference push the
fields away from these steady states, however, the fields do not
become chaotic, rather both the powers and phase difference
are periodic functions. The period 𝑇 can be expressed as a
function of the waveguide parameters, initial power and phase
of the input fields.

For switching solutions, the phase difference between
the two polarization vectors experiences abrupt phase shifts
through 𝜋 as the light propagates within the waveguide. As
a result, the state of polarization flips between two well-
defined polarization states, where the flipping angle depends
on fiber parameters and initial condition. Figure 2 shows an
example of switching behavior of the polarization state for
which the 𝑎 = 𝑏 = 2 with 𝑝10/(𝑝10 + 𝑝20) = 1/2 and
Δ𝜙 = (𝜙10 − 𝜙20) = 10−4. Here 𝑎 and 𝑏 are dimensionless
parameters related to the input power and the parameters
of the fiber by 𝑎 = −Δ𝛽/𝛾′

𝑐𝑃0 − (𝛾𝑐 − 𝛾2)/𝛾
′
𝑐 and 𝑏 =

(𝛾1 + 𝛾2 − 2𝛾𝑐)/2𝛾
′
𝑐 and 𝑝10, 𝜙10, 𝑝20,and 𝜙20 are initial

powers and phases of the two polarizations. This example
corresponds to a linearly polarized input laser beam in which
the polarization vector makes an angle of 45∘ to either of the
principle axes of the waveguide. We plot 𝑣 = 𝑝1/(𝑝1 + 𝑝2)
and cos(𝜃/2 = Δ𝜙) as functions of dimensionless length
𝜏 = 2𝛾′

𝑐𝑃0𝑧 , showing the periodicity of these functions and
the switching behavior of cos(𝜃/2 = Δ𝜙). Since 𝑣0 = 1/2,
the angular flipping of the polarization vector is 𝜋/2, because
cos(𝜃/2 = Δ𝜙) flips between values ±1 as shown in the
inset of Fig. 2. This in principal can lead to optical limiting
or switching devices [12].
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Fig. 2. (a) 𝑣 and cos(Δ𝜙) as functions of normalized length 𝜏. The
polariztion state flipps by 𝜋/2 as the laser light propagates.

I. CONCLUSION

High index contrast and subwavelength dimension waveg-
uides have opened up a new era in the field of nonlinear guided
optics both in terms of fundamental theories and applications.
We have presented a new vectorial nonlinear pulse propaga-
tion (VNPP) model to describe nonlinear processes in these
waveguides, demonstrated significant differences between the
predictions of VNPP and SNPP for Kerr nonlinear coefficient
and Raman gain, 𝛾, 𝑔𝑅, respectively, confirmed experimentally
the prediction of VNPP for higher 𝛾, compared to that of
SNPP, and predicted a new regime of nonlinear polarization
switching.
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