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Abstract—Inspired by organic semiconductor models based on
hopping transport introducing Gauss-Fermi integrals a nonlinear
generalization of the classical Scharfetter-Gummel scheme is
derived for the distribution functionF(η) = 1/(exp(−η)+γ).
This function provides an approximation of the Fermi-Dirac
integrals of different order and restricted argument ranges. The
scheme requires the solution of a nonlinear equation per edge
and continuity equation to calculate the edge currents. In the
current formula the density-dependent diffusion enhancement
factor, resulting from the generalized Einstein relation, shows
up as a weighting factor.

I. INTRODUCTION

Any monotone non-Boltzmann statistics based state-
equation for the carrier density of semiconductor results in a
generalized Einstein relation describing the ratio of diffusion
and drift current in thermodynamic equilibrium. This can
be interpreted as a diffusion enhancement [1]. Following
Scharfetter-Gummel one is interested in approximating the
net electron current in order to discretize the drift-diffusion
equation describing the carrier transport [2]. In the classical
Scharfetter-Gummel scheme the exponential dependence of
the carrier density on the chemical potential results in a current
expression consisting of a weighted difference of the carrier
densities. Here the usual state equation n = NcF(η) for the
carrier density in dependence on the chemical potential η, Nc

denotes the density of states, is considered for the special
distribution function

F(η) =
1

e−η + γ
, 0 ≤ n ≤ Nc

γ
. (1)

This approximation can be used for the Fermi-Dirac integral
of order 1/2 with γ = 0.27 and η < 1.3 [3]. For γ = 1
it coincides with Fermi-Dirac integral of order −1 describing
zero-dimensional Fermi gases, namely hopping transport be-
tween individual sites. Furthermore, it is the limit for vanishing
disorder σ of the Gauss-Fermi integral [4], which is used to
describe organic semiconductors [5]. The general situation is
depicted in Figs. 1 and 2.

Here we present a nonlinear generalization of the
Scharfetter-Gummel scheme for the approximation of the net
electron current governed by the carrier density expression (1).

II. CARRIER CONTINUITY EQUATIONS AND DIFFUSION
ENHANCEMENT

The continuity equation for the electrons reads
∂n

∂t
− 1

q
∇ · Jn = −R,
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Fig. 1. Plot of distribution function F(η) = 1/(exp(−η)+γ) in dependence
of the dimensionless chemical potential η for different values of the parameter
γ. In the asymptotic limit η << −2 a Boltzmann behavior is observed. For
γ = 0.27 a good approximation of the Fermi-Dirac integral of order 1/2 for
η < 1.3 is provided, whereas the case γ = 1 corresponds to the limit of
vanishing disorder of the Gauss-Fermi integral [4].

with the current expressions

Jn = −qμnNcF(η)∇ϕn = −qnμn∇ψ + qDn∇n, (2)

η =
q(ψ − ϕn) + Eref − Ec

kBT
, (3)

where q denotes the elementary charge, μn the mobility, ϕn

the quasi-Fermi potential, ψ the electrostatic potential, kB
Boltzmann’s constant, T the temperature, Eref a reference
energy for the quasi-Fermi potential and Ec the band-edge
energy. The mobility and the diffusion coefficient Dn fulfill
the generalized Einstein relation

Dn

μn
=

kBT

q

n

Nc
(F−1)′

(
n

Nc

)
=:

kBT

q
g3

(
n

Nc

)
. (4)

The factor g3 in the generalized Einstein relation is describing
a diffusion enhancement [1]. For our special choice of the
distribution function (1) the relation becomes

g3(x) =
1

1− γx
, (5)

while the current reads

Jn = −qnμn∇ψ + μnkBT
1

1− γ n
Nc

∇n. (6)
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Fig. 2. Plot of diffusion enhancement factor g3 in dependence on the
dimensionless chemical potential related to the distribution function F(η) =
(exp(−η) + γ)−1 for different values of the parameter γ. In the asymptotic
limit η << −2 no diffusion enhancement is observed (Boltzmann limit).
Additionally, the diffusion enhancement factor g3 related to the Fermi-Dirac
integral of order 1/2 is depicted.

III. CURRENT APPROXIMATION

In the following we consider the one-dimensional case on
the spatial interval [xa, xb] and the following scaling of the
equation: the potentials are given in units of the thermal
voltage UT = kBT

q and the current is given in units of
j0 = qμnNc

UT

xb−xa
. The Scharfetter-Gummel discretization is

derived by solving the following equation
(
qμnNcF

(
η(ϕn, ψ)

)
ϕ′n

)′
= 0, (7)

on the interval [xa, xb] with the boundary values ϕn(xa) = ϕa

and ϕn(xb) = ϕb. The electrostatic potential ψ is assumed to
be linearly dependent on x, the mobility μn is taken to be an
average value on the interval [xa, xb]. First integration yields
−qμnNcF

(
η(ϕn, ψ)

)
ϕ′n = j = const. Second integration

results in an integral equation for the unknown current j
∫ ηb

ηa

1
j

F(η) + δψ
dη = 1. (8)

The boundary values are

ηa = F−1(na/Nc), ηb = F−1(nb/Nc), (9)

and potential difference δψ is given by δψ = ψb − ψa. For
details of this approach see [6]. For the distribution under
consideration this integral equations leads to the following
nonlinear, local equation for the edge current j:

j = f(j) = B(δψ + γj)eηb −B(−(δψ + γj))eηa . (10)

where B(x) = x
ex−1 is the Bernoulli function. This equa-

tion has a unique solution j = j(ψa, ψb, ηa, ηb) due to the
monotonicity of the Bernoulli function. Using the relation

F−1(x) = − ln

(
1
x − γ

)
the current expression in terms of

densities is given by

j = g3

(
nb

Nc

)
B(δψ + γj)nb − g3

(
na

Nc

)
B(−δψ − γj)na.

(11)
Here, in this particular case the density-dependent diffusion
enhancement factor g3 shows up explicitly. With γ = 0
the well-known Scharfetter-Gummel expression is reproduced,
while Eq. (11) is nonlinear with respect to the density and the
potential difference δψ = ψb − ψa is modified by the local
edge current and the parameter γ describing the deviation of
the state-equation for the density with respect to the Boltzmann
case.

The essential change compared with the classical scheme
is now the solution of the nonlinear equation (11) on every
edge of the spatial discretization during the assembly of each
continuity equation.

IV. CONCLUSION

For a restricted range of arguments of the Fermi-Dirac
integral of order 1/2 a generalized, simple to implement,
nonlinear Scharfetter-Gummel scheme has been derived. The
effort is small compared with the introduction of an additional
outer iteration. The local nonlinear equations for calculation
of the edge currents can be solved due to the monotonicity
properties of the Bernoulli function. The necessary conditions
[7] for proving the existence of bounded steady state solutions,
uniqueness of the equilibrium solution, and dissipativity are
preserved, too.
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