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Abstract- We present the numer

exciton-polartion relaxation kinetics
semiconductor microcavities including G
ZnO. From semiclassical Boltzmann mo
effect was found at low pumping rate. A
density which is lower than the M
polaritons tend to condense at the low
Besides, the wide-band gap material 
achieve polariton condensate even at ro
(RT) due to the large oscillator stren
binding energy. 
 

I.  INTRODUCTION 
Exciton-polaritons are quasi-particle

strong coupling between exciton and
semiconductor microcavity (MC), w
composite bosons with very light eff
controllable dispersions [1]. Due 
properties, the polaritons tend to con
state through several relaxation 
spontaneously decay of polaritons from
radiates laser-like coherent emission, 
laser. The polariton laser needs no elect
inversion, leading to a ultra-low thr
light source. The relaxation 
exciton-polaritons in MCs have b
previously [2, 3], but the compariso
features in different systems was stil
view of this, we present an overall
polariton scattering dynamics in diffe
several distinct conditions. 

II. SIMULATION MODEL

To simulate the scattering dynamics 
one can use the semiclassical Boltzman
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the radiative decay rate of excitons
setting the cavity photon lifetime of
for CdTe and ZnO. The exciton 
time was set by 100 ps in all the 
consider a pumping spot size R
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the two dimensional degeneracy 
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wave vectors k// [2, 3]: 
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Mk ,  and  are matrix elements of polaritons, 
dispersion relation for polaritons and the excitons 
density of state. 
 

III. SIMULATION RESULTS 

Through the simulation model mentioned above, the 
population distribution curves of polaritons versus 
in-plane wavevector k// in GaAs and CdTe MC were 
summarized in Fig.1. We can observe a bottleneck in 
the high k// region. The bottleneck effect prevents 
polaritons from relaxing down to their ground-state at 
k//=0 [2], which is the main obstacle for the realization 
of polariton lasers. However, the polariton-polariton 
scattering was very efficient when we applied a higher 
pumping rate, which was one of the ways to overcome 
the bottleneck effect. In Fig. 1, we can see the threshold 
pumping rate is about 1011 cm-2/100ps for CdTe. The 
bottleneck effect disappears and the distribution 
function of polaritons has a Bose-Einstein distribution 
above the threshold. One should notice that the 
pumping density of GaAs QW was comparable to the 
saturation density (nsat = 6.6×1010cm-2) when we 
increase the pumping rate. Polaritons in CdTe can relax 
to the ground-state way below the saturation density 
(nsat = 6.7×1011cm-2).  

Due to the small exciton binding energy of GaAs and 
CdTe, which are much smaller than the thermal energy 
of RT (26 meV), the realization of RT polariton lasers 
is extremely hard to achieve in these material systems. 
We then consider the ZnO MC as an alternative 
candidate to achieve RT polariton lasing since the 
larger exciton binding energy of ZnO (Eb = 60meV) and 
the larger oscillator strength of excitons. Fig. 2 depicts 
the simulation result of the strongly coupled ZnO MC. 
The threshold pumping rate of ZnO microcavity is P = 
1012 cm-2/100ps at RT, which is smaller than the 
saturation density (nsat = 1.3×1013 cm-2) of ZnO QWs.  

 
IV.  CONCLUSION 

At low pumping rate, most of the polaritons are 
accumulated in the high k// region before they reach 
condensate due to the lacking of ac-phonon scattering 
with the polaritons. The bottleneck effect is bypassed  

 
Fig. 2. Distribution function of polaritons in ZnO at RT. P=1, 
10 1011cm-2/100ps (blue line and black line) 

 
by the stronger polariton-polariton scattering at higher 
pumping rate. Furthermore, the large exciton binding 
energy and exciton oscillator strength enable the ZnO 
polaritons to survive at RT, which makes ZnO a 
promising material for the realization of the RT 
polariton laser.  
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