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Abstract—A theoretical model of the mode-locking of light bullets 
in a planar slab waveguide array geometry is presented.  The 
model yields three-dimensional localized light bullets that act as 
global attractors for particular parameter values.  These light 
bullets can be controlled via non-uniformities in the gain applied 
to the array.  This manipulation is robust and allows for bullet 
routing as well as the production of the NAND and NOR logic 
gates. 
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I.  INTRODUCTION  
The technological feasibility and nonlinear properties of 

semiconductor waveguide arrays (WGAs) make them an ideal 
technology for all-optical signal processing applications.  The 
property of WGAs that make them so attractive from a 
technological standpoint is that nonlinear self-focusing is 
capable of overcoming discrete spatial diffraction for a 
sufficiently intense electrical field. This was predicted 
theoretically by Christodoulides and Joseph [1] and later shown 
experimentally by Eisenberg et al [2].  Based on this work, the 
WGA was proposed as an ideal component for both optical 
routing and switching purposes [2], temporal mode-locking of 
lasers [3], and the generation of spatial optical solitons [1,2]. 

In this manuscript, the generation of three-dimensional 
spatial confinement is based on the generation of spatial 
solitons in the WGA structure.  Due to the planar structure of 
the waveguides in this slab waveguide array mode-locking 
model (SWGAML), the nonlinear mode coupling that creates 
temporal solitons in the WGA will generate the spatial 
confinement needed for light-bullet formation.  In addition to 
the generation of bullets, we propose further enhancements to 
the SWGAML that allow the control and routing of bullets 
produced in the slab waveguide structure.  

II. GOVERNING EQUATIONS 
Mode-locking in waveguide arrays is created by a 

competition between the saturable absorption generated by the 
nonlinear mode coupling [4] of the waveguides and the 
bandwidth limited gain. The waveguide array mode-locking 
model (WGAML) describes the temporal mode-locking in 
traditional ridge waveguide arrays.  To model this slab 

waveguide system, the WGAML was heuristically extended 
from one to two spatial dimensions [5]: 

 

where ∇2 = ∂x
2 + ∂y

2 .  The impact of current injection is 
modeled as a saturating gain: 

 
In (1), A0, A1, A2are the envelopes of the electric fields in the 
0th, 1st, and 2nd waveguides respectively. Unlike the 
WGAML [4], the SWGAML is in a stationary frame and so D 
is the diffraction coefficient where the sign of D is the sign of 
the index of refraction.  β  determines the strength of the Kerr 
nonlinearity, ρ  is proportional to  the probably of three photon 
absorption occurring, the ν j  are the aggregation of linear 
losses for each waveguide, and C is the strength of evanescent 
coupling between adjacent waveguides. The saturable gain 
g(x,y,t) accounts for the depletion of minority charge carriers at 
high optical intensities, resulting in a saturating gain.   The 
filtering term, gτ∇ 2results in higher frequency spatial modes 
receiving lower amounts of gain than lower frequency modes.  
This term can be though to arise from diffusion that results in 
more explicit models of the gain medium.  This model supports 
light bullet formation from initial white-noise electric field 
excitations [5]. 

The function f(x,y,t) in (2) accounts for the possibility of 
non-uniform gain profiles. In order to uniquely specify the 
gain, it is imposed that the mean of f(x,y,t) is one at all times 
and f(x,y,t) >0.  Therefore, larger values of g0  always 
correspond to larger total injection currents regardless of the 
exact form of f(x,y,t). The addition of non-uniform gain allows 
for a variety of additional dynamics not found in the uniform 
gain case.  In particular, a non-uniform gain breaks 
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translational invariance in the system and creates solutions 
where the bullets translate in space.  

III. LIGHT BULLET ROUTING 
The use of sloped gain generates a simple method of bullet 

routing. Specifically, light bullets gain velocity in the direction 
of the gradient of the gain. The simplest types of functions 
would be comprised of piecewise linear functions.  These 
functions are capable of robustly routing bullets even through 
large angles. As an example, a junction can be created 
generating a single gain ramp but superimpose it with 
forbidden regions that contain no gain.  Mathematically, a plus-
shaped junction of the form 

 (3) 

where m and n control the direction in which the bullet moves 
and where one arm is the input and the other three outputs.  
Directing the light bullets is done simply by changing the 
direction of the slope of the gain along the plus-shaped 
junction.  Figure 1 shows the three possible routings with this 
simple geometric application of the gain.  The bullet location is 
chosen by application of gain gradient.  When n=0.01 the bullet 
is routed up, when n=0 the bullet is routed across, and when 
n=-0.01 the bullet is routed downward (m=0.01). 

In the application of a piecewise linear gain, the regions of 
zero gain in Figure 1 prevent the bullet from entering the 
region and do not destroy or trap the incoming bullet.  The 
result is the bullet being routed through the junction rather than 
taking the most direct path between the outputs.  The inclusion 
of these regions creates great flexibility in the generation and 
construction of devices used for bullet routing. 

 
Fig. 1 Bullet routing using the gain equation in (3).  The 

dotted lines show the location of the bullet center as time 
progresses. The piecewise linear gain routes the bullet through 
the junction. 

IV. GAIN MEDIATED INTERACTIONS:  NOR AND NAND 
It is also shown that the SWGAML is capable of supporting 

multiple-bullet solutions. By employing non-uniform gain, it is 
possible to route both of the bullets simultaneously.  Therefore, 
it is possible to make use of multiple bullets and their 
interactions.  The interaction of multiple bullets occurs through 
two distinct processes.  The first is a direct interaction when 
two bullets are physically close enough to interact, similar to 
the interactions seen in the nonlinear Schrodinger equation. In 
the applications envisioned for this device, robust interactions 
can be gain-mediated. These types of interactions occur only 
through the gain term in (2).  In the gain term, the level of 
saturation is determined by the energy.  This non-local term 
allows bullets that are physically separated to influence one-
another by increasing or reducing the gain of the system.  
While less powerful than direct interactions, this mechanism is 
still capable of producing both optical NOR and NAND gates. 

V. CONCLUSIONS 
Light bullets hold tremendous potential as a critically 

important technology in the field of photonics. There are 
numerous technological methods both proposed and realized 
for engineering and controlling light bullets, and our approach 
is certainly not the only viable option for producing light 
bullets.  However, as with all technologies, the implementation 
of light bullet technology requires the system to be both robust 
and inexpensive.   Using slab waveguides, we have 
theoretically shown the ability of the SWGAML to produce 
and stabilize light bullets starting from noise.  Furthermore, 
with the introduction of non-uniform gains these light bullets 
can be routed.  Light bullets that are routable may be brought in 
close enough proximity to interact via gain.  Gain mediated 
interactions are capable of reproducing the master logic gates 
and therefore all logic gates.  Furthermore, the SWGAML 
architecture relies on simple input and output coupling as well 
as easily addressable routing via modulations of the gain 
provided to the system.  Therefore, the SWGAML is able to 
control all-optical data streams and is capable of doing so in a 
feasible and easy to implement manner. 
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