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Abstract—We present a comparison of continuum �⃗� ⋅ 𝑝 and
atomistic empirical Tight Binding methods for the analysis of
the optoelectronic properties of InAs/GaAs quantum dots.

I. INTRODUCTION

Self-assembled InAs/GaAs quantum-dot structures (QD)
have recently received much attention due to their relevance
for optoelectronic devices [1] .

Relevant aspects in this context are to accurately model
the optical properties of QD and to consider the influence
of the lattice mismatch induced strain field and its effects
on the bandstructure and optoelectronic properties. The strain
distribution in solids is usually treated with the continuum
mechanical model [2], or with the valence force field model
[3], or using density functional techniques [4].

For the calculation of electronic states in QD several
schemes have been used with different levels of sophistication,
for example the simple effective mass approximation [5], the
multiband �⃗� ⋅ 𝑝 theory [6], or atomistic approaches like the
tight-binding (TB) [7] and the pseudopotential method [8].

Atomistic models are computationally more demanding,
with a computational effort which grows with the number of
the atoms, but they provide inter-atomic details which could
be notable important as a nanostructure approaches a lattice-
constant dimension. On the other hand, continuum models
are computationally fast and accurate for nanostructures with
dimensions much larger than a lattice constant, they are not
restricted by a maximum size of a structure, but their accuracy
is strongly reduced when the dimensions of a structure reach
an atomic length scale.

The first models of the �⃗� ⋅ 𝑝 theory as a perturbative
theory were presented in the work of Dresselhaus et al.
[9], and Kane [10], while an approach based on symmetry
arguments was given by Luttinger [11]. The multiband scheme
for bulk materials was extended to heterostructures by an ad
hoc symmetrization procedure [12]. Successively, the so-called
exact envelope function approximation (EFA) [13] was used
to derive a 6-band model for the valence bands of zincblende
heterostuctures [14], while an 8-band model has been provided
by Pokatilov et al. [15].

Being a continuous media model, approaches based on
EFA eventually break down for very small structures and
an atomistic description becomes inevitable [16], [17]. The

computational cost of such methods, however, limits their ap-
plication to rather small structures. Empirical TB methods [17]
are able to treat structures consisting of few million atoms on
distributed supercomputer clusters and to about 2− 3 ⋅ 105 on
typical workstations.

Optoelectronic properties of InGaAs zincblende QD with
varying shape and size have already been studied with �⃗� ⋅ 𝑝
theory [18], and with 8-band model to investigate the effect
of strain and band-mixing [19].

Recently a comparison of empirical TB and �⃗� ⋅ 𝑝 models
has been performed for zincblende GaN/AlN QD without
including strain and piezoelectrical fields [20].

In this paper we present a systematic comparison of energy
levels, wave functions and electric dipole moments given by
empirical TB and �⃗� ⋅ 𝑝 models including electromechanical
fields for realistic InAs/GaAs self-assembled QD.

II. THEORY

A. �⃗� ⋅ 𝑝 method

The 8-band model includes the electron, heavy-holes, light-
holes and spin-orbit split-off bands around the Γ point of the
Brillouin zone, and treats all the other bands as remote. The
wave function of a state 𝑛 with energy 𝐸𝑛 is given by a
linear combination of the eight Bloch parts weighted by the
respective envelope functions, 𝜓𝑛 =

∑8

𝑖=1
𝜙𝑖𝑢𝑖, where 𝜙𝑖 are

the envelope function and 𝑢𝑖 are the Bloch states [15].

B. Tight binding method

The empirical TB is based on a linear combination of atomic
orbital ansatz for the wavefunctions. The matrix elements
are treated as parameters and fitted to accurate bandstructure
calculations or experimental data. In this work we use a
sp3s∗d5 parameterization [21] that includes strain effects via
deformation potentials and fitted Harrison scaling rules.

C. Dipole moments

Within the �⃗� ⋅ 𝑝 model the dipole matrix elements �⃗�𝑛𝑚 are
ill-defined in crystals involving extended Bloch states [22], so
we instead calculate the momentum matrix element 𝑝𝑛𝑚 ≡
𝑝
(𝜙)
𝑛𝑚 + 𝑝

(𝑢)
𝑛𝑚, where 𝑝 (𝜙) and 𝑝 (𝑢) are the envelope and the

Bloch parts of the momentum matrix element, respectively,
and it is usual to neglect the envelope part [18]. Then �⃗�𝑛𝑚 are
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Fig. 1: Optical gap (Gap) and electronic (e) and holes (h)
ground states (GS) and first excited states (1ex) as a function
of the well length L.

afterwards calculated by 𝑝𝑛𝑚 = 𝑖𝑚0

𝑒 𝜔𝑛𝑚�⃗�𝑛𝑚, with ℎ̄𝜔𝑛𝑚 =
𝐸𝑛 − 𝐸𝑚, 𝑚0 free electron mass and 𝑒 electronic charge.

In the framework of TB model optical transitions are com-
puted using a simple dipole approximation and the Hellmann-
Feynman theorem to represent the position operator in terms
of known TB parameters [24]. Our approach neglects intra-
atomic matrix elements [25], [26] that generally give a small
correction. Excitonic effects are also not considered in this
work.

III. RESULTS

In order to compare the results of the two methods, we
need to use an equivalent set of physical parameters, i.e., the
TB parameters have to be deduced in terms of �⃗� ⋅ 𝑝 [21]. To
verify the consistency of our choice, in the first part of our
contribution we compare results of InAs/GaAs quantum wells
with different size 𝐿. In Figure 1 we plot the optical gap and
the electronic and holes ground and first excited states as a
function of the well length 𝐿 given by the two models.

As we can see, the curves of the optical gap already
converge for 𝐿 = 5nm. So in the main part of our con-
tribution we can compare results given by the two models
for realistic truncated-pyramid In𝑐Ga1−𝑐As/GaAs QD with
different size. We present results for the energy levels and
we compare systematically the confined wave functions given
by the two methods. As is well known the shape and the
spacial distribution of the wave functions strongly influence
the optical properties of a nanostructure, e.g., because of a
different overlap of the states [19], hence we also analyze and
compare some of the most relevant interband dipole moments.

As an example of our work, in Figure 2 we show the
electronic and holes ground state calculated using the �⃗� ⋅ 𝑝
model, while in Figure 3 is plotted the holes ground state
given by TB method together with the atoms of the different
chemical species building the heterostructure.
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