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Abstract—In this paper we present physics based analysis of 
Quantum Dot Arrays (QDA) conductivity. Photovoltaic devices 
based on QDA have a potential for delivering the ultra-high 
efficiency photovoltaic (PV) cells for energy generation in space 
and terrestrial applications. Model and results are analyzed and 
discussed. 
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Quantum Dot Arrays (QDA) have a potential for delivering 
the ultra-high efficiency photovoltaic (PV) cells for energy 
generation in space and terrestrial applications [1], Fig. 1(a), 
PV cell efficiency versus QD size and interdot distance. QD 
array conductivity is an important property and it is proposed 
to use for integration the QD quantum system model into 
traditional 3D TCAD software we develop (3D NanoTCAD 
simulator at CFDRC). This paper presents a model we have 
proposed for such a QD array structure, which we have 
implemented into our NanoTCAD device simulator. While we 
have a large selection of quantum and kinetic models 
developed, and validated [2], this currently presented model 
has a number of advantages: it is relatively simple, accurate 
and fast, and deliver the conductivity, which compares well 
with available data [3,4]. The proposed approach considers a 
3D regimented array of quantum dots using an envelope 
function approximation [2]. The regimentation results in an 
artificial crystal where the atoms are represented as quantum 
dots. This structure is referred to as a quantum dot crystal 
(QDC). In order to determine the conductivity and mobility of 
a cubical QDC, the energy dispersion, group velocity, Fermi 
energy, and conductivity must be calculated. The energy 
dispersion is calculated by solving the Schrödinger equation of 
a cubical quantum dot with finite potential barriers. The 
solution to the Schrödinger equation has a form similar to the 
Kronig-Penny model [2]. The energy dispersion of a cubical 
QDC can be determined along specific quasi-crystallographic 
directions. Our approach is based on accurate calculation  of 
energy dispersion and density of states in QDC, following the 
models in [3,4] and their extensions we have performed. An 
example of calculated density of state is shown in the insert of 
Fig 1. One of GUI interfaces with the NanoTCAD software 
developed is shown in Fig 2.  

I. MODEL DEVELOPMENT 
The energy dispersion of a cubical QDC can be determined 
along specific quasi-crystallographic directions. Figure 1 
shows the dispersion relation for a QDC along the [100] quasi-
crystallographic direction for an InAs/GaAs system. A 
quantum dot size of L=10nm and barrier thickness of H=5nm 
was simulated. The effective masses and conduction band 
offset for the simulated system are as follows: m*

InAs = m*
W = 

0.04m0, m*
GaAs = m*

B = 0.0665m0, EC_offset = 0.45eV, where m0 
is the electron rest mass. The carrier wave vector is labeled as 
q and is subscripted with the particular quasi-crystallographic 
direction. Each energy band is characterized by the three 
quantum numbers: nx, ny, and nz. The superscript of each 
miniband denotes the degeneracy of that particular miniband. 
Spin degeneracy is not counted in the energy dispersion 
calculation. It is taken into consideration for the density of 
states (DOS) calculation. 
The density of states is the number of carrier states allowed 
per unit volume per unit energy interval. Mathematically, it is 
given by the following, 
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where the integration is carried over the whole Brillouin zone 
[2]. As stated above, the factor of 2 accounts for the spin 
degeneracy of an electron. Figure 2 shows the DOS for the 
111 miniband. The data obtained for the DOS of each 
miniband is stored and used to calculate the position of the 
Fermi level of the QDC. The Fermi level is determined from 
the neutrality equation 

nNpN AD +=+ −+                                       (2) 

where −
AN , +

DN , n and p denotes the concentration of the 
ionized acceptors, donors, free electrons and holes, 
respectively. For an n-type QDC, the neutrality equation can 
be rewritten in the following form 
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where the summation over n is carried out over all mini-bands 
in the conduction band and the summation over l is carried out 
over all mini-bands in the valence band [2]. The energies Emin 
and Emax are the edges of the corresponding mini-bands. This 
equation is numerically solved for EF using the calculated 
DOS for the lower energy minibands (111, 112, 122), 
appropriate energy ranges and chosen values for the dopant 
energy (ED) and doping level. Only the 111, 112 and 122 
mini-bands are used in the calculation because the DOS for 
the higher energy mini-bands are orders of magnitude lower 
than that of the said mini-bands and do not affect the Fermi 
energy calculation whether they are considered or not. For a 
doping concentration of 1e16 cm-3, ED of 0.3 eV and 
temperature of 300K a Fermi level of 0.140 eV was obtained. 
The reference energy is the bottom of the energy barrier (see 
DOS insert in Fig.1). 
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Fig. 1. 51% Efficient QDPV cell [1]. 

In order to calculate the conductivity and thus the mobility a 
QDC the contributions from each mini-band in the conduction 
band of the structure must be considered. Mathematically, this 
is written 
                   ( )∑=

n

nσσ                                                   (4) 

where the tensor components are given by Eq. (5): 
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Here, e is the elementary electron charge, kB is Boltsman’s 
constant, T is the temperature, ν(n) is the group velocity vector, 
EF is Fermi’s energy of an electron, and q is the electron wave 
vector. The n index signifies a particular mini-band. The 
integration is carried out over the entire Quasi Brillouin Zone 
(QBZ). The relaxation time (τ0) is assumed to be constant and 
equal to a value characteristic for the given materials. In our 
case, τ0 = 10-12 sec. It is apparent that electron dispersion and 
the position of the Fermi level determine the conductivity. In 
addition, the group velocity is dependent on the mini-band 
structure and electron dispersion in the QDC. In general, it is 
given for the n-th subband by Eq. (6): 
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where E(n) are the energies for each n-th mini-band. In order to 
determine the conductivity of a QDC, the group velocity must 
be calculated first. Since the group velocity is also dependent 
on the wave vector, we must choose a appropriate quasi 
crystallographic direction for the calculation. Given the 
symmetry of the cubical QDC, the conductivity has the 
relation σxx = σyy = σzz. Thus, whether the [100], [010], or 
[001] direction is chosen, group velocity and conductivity will 
yield identical results. For simplicity, the [100] direction has 
been chosen for the subsequent calculations. Using the above 
results for group velocity along with the results obtained for 
electron dispersion and Fermi position, the conductivity of the 
QDC was calculated. Using the values that were mentioned 
above, a total conductivity of 489.32 S/m was obtained for a 
QDC of L=10nm and H=5nm. This value was then used to 

calculate the mobility of the QDC. For electrons, the mobility 
is given by 

eN
σ  =μ                                (7) 

where e is the elementary charge,  σ is the total conductivity 
and N is the carrier concentration given by Eq. (8). 

 
Fig. 2. 3D CFDRC NanoTCAD device simulator GUI. 
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Substituting the appropriate values into Eq. (7) and solving, a 
mobility of 772.73 cm2/Vs is obtained for a QDC of L=10nm 
and H=5nm. This process was repeated for holes. A hole 
mobility of 0.3213 cm2/Vs was obtained. The process can be 
expanded to find the conductivity for different concentrations 
of the GaxIn1-xAs/GaAs system for varying levels of doping. 
Fig. 3 shows the results of such a simulation. 

Fig. 3 Calculated QDA conductivity of GaInAs/GaAs 
dot/host system as a function of doping level.  
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