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Abstract—We introduce a quantum dot orbital tight-binding
non-equilibrium Green’s function approach for the simulation of
novel solar cell devices where both absorbtion and conduction
is mediated by quantum dot states. By the use of basis states
localized on the quantum dots, the computational real space mesh
of the Green’s function is coarse-grained from atomic resolution
to the quantum dot spacing, which enables the simulation of
extended devices consisting of many quantum dot layers.

I. INTRODUCTION

Extended quantum dot superlattices (QDSL) as found in
third generation solar cell devices [1], [2] consist of a large
number of weakly coupled quantum dots, with a number of
involved atoms that exceeds the limit that may still be han-
dled by even today’s largest supercomputers. For that reason,
atomistic simulations of QDSL make use of the symmetry and
periodicity properties present the idealized structure. However,
large built-in fields and any kind of disorder make the elec-
tronic structure deviate from the minibands found for the latter.
Furthermore, even though the electronic minibands be narrow
and there may exist gaps in the phonon spectrum, there will be
a large amount of scattering, leading to a further localization
of the wavefunction and preventing coherent transport in the
device. It is thus desirable to derive a computational model
for the extraction of the device characteristics that is able to
benefit from the localized nature of the QD wavefunctions
and at the same time allows for the use of advanced quantum-
kinetic theories for the computation of photogeneration and
transport over the full device, such as the non-equilibrium
Green’s function (NEGF) approach developed for quantum
well solar cells in [3], [4].

II. APPROACH

The hybridization approach uses the perturbative expansion
of the QDSL wave function in terms of the eigenstates of the
isolated dots. This approximation is reasonable in the regime
of high confining barriers and corresponding small overlap of
the wavefunction of neighboring dots. The resulting molecular
orbital approach can be interpreted as a tight-binding theory
with quantum dot orbitals replacing the atomic orbitals, and
is in spirit similar to the first NEGF models of quantum well
superlattices for quantum cascade laser simulations [5], [6].

Since the wave functions and energies of the quantum dot
states are determined separately for each individual dot, the
corresponding computational domain is small enough to allow,
in principle, for the use of accurate ab-initio methods. In
this paper, a simple effective mass approximation is used
to compute the QD orbitals. To agree with full real space
calculation, the local variation of the electrostatic mean-
field potential needs to be included in the solution of the
Schrödinger equation.

Each quantum dot provides a set of eigenfunctions ψim(r)
and eigenenergies εim, i = 1, 2, . . . , ND, m = 1, 2, . . .M ,
where ND is the number of QD, M the number of states
considered and b is the particle species index, i.e. electron
or hole, respectively. In order to use the single particle QD
eigenstates as a tight-binding basis in analogy to the atomic
case, a Löwdin-orthogonalization procedure [7] needs to be
applied. Fig. 1 shows the first three QD orbitals for a cubic
Si QD of 2 nm edge length embedded laterally (x-y) in SiO2

and vertically (z) in SiC as determined within simple effective
mass theory (EMA).

The non-interacting nearest-neighbor tight-binding Hamil-
tonian in this QD orbital basis is

H0(t) =−
∑
〈i,j〉

M∑
m,n=1

tnmij d̂†in(t)d̂jm(t) +

ND∑
i=1

M∑
m=1

ε̃imn̂im(t)

≡
Nd∑

i,j=1

M∑
m,n=1

hmn
ij d̂†in(t)d̂jm(t), (1)

where 〈i, j〉 are nearest-neighbor sites, t is the hopping matrix,
n̂ the density operator and ε̃im = εim + Ūi, with Ūi the
average value for the Hartree potential of Coulomb interaction
at the dot position. The heterostructure potential does no
longer appear explicitly, since it has been considered in the
determination of the TB-parameters ε and t.

The above Hamiltonian is used in the equations for the
steady state non-equilibrium Green’s functions, including
interaction self-energies for the coupling to photons and
phonons, as well as the contact self-energy. The expressions
for the interaction self-energies are determined as the Fock
term within many-body perturbation theory on the level of a
selfconsistent Born approximation.
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Fig. 1. Orbitals of the first three electronic states of a qubic silicon quantum
dot embedded laterally in SiO2 and vertically in SiC as computed within
EMA.

The density of states and the charge carrier density are
obtained from the solution of the above equations and the
QD eigenfunctions via

D(r, E) =
∑
i,j

∑
m,n

Aim,jn(E)ψ∗im(r)ψjn(r), (2)

n(r) =

∫
dE

2π

∑
i,j

∑
m,n

[
−iG<

im,jn(E)
]
ψ∗im(r)ψjn(r),

(3)

where A ≡ i(GR−GA) is the charge carrier spectral function.
In the same way, the local current density is obtained as [8]

j(r) =− ~
2m0

∑
i,j

∑
m,n

∫
dE

2π

[
−iG<

im,jn(E)
]

× lim
r′→r

[
ψim(r)∇ψ∗jn(r′)− ψ∗jn(r′)∇ψim(r)

]
. (4)

III. RESULTS

Fig. 2 shows the spatial evolution pattern of electron and
hole photocurrent contributions of a 20 quantum dot superlat-

tice, resolved at the quantum dot positions. The overall current
is perfectly conserved. In the present case, the superlattice is
intrinsic, and charge separation is enabled by introduction of
carrier selective contacts, i.e. the closure of minority carrier
contacts via adjustment of the respective contact self-energy
terms.
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Fig. 2. Spatial evolution of electron and hole photocurrent contributions
resolved at the quantum dot locations. The overall current is perfectly
conserved.

IV. CONCLUSION

The QDTB-NEGF approach extends the applicability of
powerfull quantum-kinetic methods to extended optoelectronic
devices based on quantum dots in the low to intermediate
coupling regime, and is thus able to provide insight into the
microscopic processes underlying their operating mechanisms.
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