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Abstract—An important ingredient of VCSEL device simu-
lation is the solution of the optical model. Challenges are the
multiscale structure of realistic devices with thin layers in the
Bragg mirror and active zone on the one hand and large total
resonator volumes on the other hand. In order to compute the
resonating modes and frequencies, Maxwell eigenvalue problems
have to be solved on these geometries. Thereby, also layered
infinite exterior domains have to be respected.

In commercial simulation packages the optical problem is
often restricted to geometries with cylindrical symmetry or even
only simplified 1D material stacks are considered. However, with
increasing complexity of devices and novel design ideas like
inclusion of photonic crystal structures, full 3D modeling of
VCSELs becomes very important.

In our contribution we present the finite element method for
computation of the optical resonance modes and corresponding
far fields in VCSELs. We investigate realistic 3D devices and
quantify numerical effort and accuracy.

I. INTRODUCTION

The finite element method (FEM) is very well suited for

simulation of nano-optical systems and devices [1], [2]. Its

main features are the capability of exact geometric modeling

due to usage of unstructured meshes and high accuracy at low

computational cost. The finite element method offers great

flexibility to approximate the solution: different mesh sizes

h and polynomial ansatz functions of varying degree p can

be combined to obtain high convergence rates. As a result,

extremely demanding problems can be solved on standard

workstations [3].

Solution of Maxwell’s equations for realistic 3D VCSELs

is a challenging task. Since the VCSEL resonator is realized

by a distributed Bragg reflector (DBR), the geometry inherits

a pronounced multiscale structure. Total device sizes are often

up to several 100 cubic wavelengths with subwavelength DBR

layer sizes, very thin active zones, and structured apertures.

Furthermore, the structured infinite exterior of a VCSEL has

to be modeled to obtain realistic predictions of radiation

losses and lasing thresholds. As we will demonstrate, the FEM

package JCMsuite offers a powerful tool for solution of this

challenging simulation task.

II. MATHEMATICAL BACKGROUND

The main physical effects in a VCSEL are associated to

time scales, ranging over several orders of magnitude. Since

the frequency of the optical modes is much higher than those

of all other effects, a time-harmonic ansatz for the electric

field is well-justified:

E(x, y, z, t) = e−iωtE(x, y, z), (1)

where ω denotes the frequency. Using this ansatz in Maxwell’s

equations, the following second order “curl-curl equation” for

the electric field can be derived:

∇× µ−1
∇× E = ω2εE. (2)

In above equation no exterior current or charge density sources

are present: the light field of a VCSEL is created by coupling

to the electron system in the active layer. In Maxwell’s equa-

tions this usually enters via the complex permittivity tensor ε.

The resonance problem then consists of finding pairs (E,ω),
such that Maxwell’s equations (2) on the given geometry are

fulfilled. Furthermore, the so called radiation condition has to

be satisfied which requires that the resonance modes are purely

outward radiating.

III. FINITE ELEMENTS

For the finite element method the strong form of Maxwell’s

equations (2) has to be transformed into weak form by

multiplication with a test function and integration over the

computational domain. One arrives at the following formula-

tion:

Find (E,ω) ∈ H (curl ,Ω) × C, such that:

a(E, v) = ω2b(E, v) , ∀v ∈ H (curl ,Ω) , (3)

with:

a(E, v) =
∫
Ω

∇× v · µ−1 · ∇ × E dV,

b(E, v) =
∫
Ω

v · ε · E dV.

In order to arrive at a finite dimensional problem which can

be solved on a computer, the infinite dimensional function

space H (curl ,Ω) is restricted to a finite element space

V ⊂ H (curl ,Ω). The finite elements define so called shape

functions whose support is restricted to individual patches of

the triangulation of the geometry, see Fig. 1.

Finite element discretization of (3) leads to a sparse gen-

eralized eigenvalue problem which is solved numerically.

Transparent boundary conditions are realized via perfectly

matched layers (PML) [4].
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Fig. 1. Finite element triangulation of a VCSEL with cylindrical symmetry.

Fig. 2. Log of intensity of electric field of fundamental VCSEL mode ob-
tained from FEM computation. The out-coupled field leaves the computational
domain at the top boundary.

IV. VCSEL SIMULATION

Figure 1 shows the layout of the first VCSEL example

we investigate. It inherits a rotational symmetry. The InGaAs

active layer is embedded into a top and bottom GaAs/AlGaAs

DBR mirror. Two AlOx apertures are placed above the active

zone. Due to the cylindrical symmetry, the 3D resonance mode

computation can be restricted to a 2D cross section. This leads

to substantial savings in computational times and memory.

Furthermore, the obtained solution can serve as a reference

for a full 3D simulation and will allow us to quantify the

accuracy of 3D simulations.

The fundamental resonating mode of the VCSEL computed

with the cylinder symmetrical setup is shown in Fig. 2. The

corresponding resonance frequency is given by:

ω3D,cyl. = 1.926 · 1015 + 1.86 · 1011i, (4)

which corresponds to a wavelength of:

λ3D,cyl. = 978.12 nm.

which is close to the design wavelength of 980 nm.

Figure 3 shows the convergence of the real and imaginary

part of the fundamental eigenvalue for different finite element

degrees and mesh refinements. We observe that very high

accuracies can be reached with relative errors down to 10−7

for the real part. Note that the relative error of the imaginary

part which quantifies the gain/loss of the lasing mode is larger

due its much smaller total value, c.f. (4). However, also here

we reach relative accuracies well below 0.1%.
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Fig. 3. Convergence of eigenmode computation: relative error of (a) real and
(b) imaginary part of fundamental eigenvalue ω in dependence on number
of FEM degrees of freedom for different polynomial orders p of the FEM
approximation. Gain in active zone was fixed to ℑm [εactive] = 0.0076. The
relative error was computed against a FEM solution with N = 13, 876, 992
unknowns.

V. CONCLUSION

We have presented the finite element method for resonance

mode computation in VCSELs. First numerical results for a

rotationally symmetric device demonstrated fast convergence

and high accuracy of the method. Real- and imaginary parts of

the resonance frequency can be computed very accurately with

relative errors down to 10−7. As a next step we will present

a comparison to a full 3D simulation and will also investigate

more complex 3D device geometries.
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