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Abstract—A frequency-dependent implicit locally one-
dimensional finite-difference time-domain (LOD-FDTD) method
is developed for the analysis of three-dimensional (3-D)
plasmonic structures. A brief formulation is given with the
use of the simple trapezoidal recursive convolution technique.
A gap plasmonic waveguide is analyzed to validate the 3-D
LOD-FDTD. The computational time is significantly reduced to
60% of that of the traditional explicit FDTD.

I. INTRODUCTION

Plasmonic waveguides have been extensively studied [1],
[2], due to its ability to make a light wave propagate through
subwavelength structures. For the analysis of plasmonic wave-
guides, the finite-difference time-domain (FDTD) method has
widely been used, in which the frequency-dependent for-
mulation is crucial to treat dispersive metals. Unfortunately,
the spatial mesh size becomes quite small for achieving
sufficient accuracy. This results in an extremely small time
step with concomitant long computation time, when the tra-
ditional explicit FDTD is used. To efficiently analyze the
plasmonic waveguides, we have developed an implicit locally
one-dimensional (LOD) FDTD [3] using the simple and
accurate trapezoidal recursive convolution technique for the
frequency-dependent formulation [4]. Note that the frequency-
dependent LOD-FDTD has been limited to the analysis of two-
dimensional structures. In this article, we develop an LOD-
FDTD method for the efficient analysis of three-dimensional
(3-D) plasmonic structures.

II. DISCUSSION

We consider the following Drude model [4]:

εr(ω) = ε∞ +
ω2

p

jω (νc + jω)
(1)

where ε∞ is the dielectric constant of the material at infinite
frequency, ω is the angular frequency, ωp is the electron
plasma frequency, and νc is the effective electron collision
frequency. To take into account the dispersion property, we
resort to the simple TRC technique [5], in which the linear
polarization P is approximated using an average of the electric
fields over two consecutive time steps. The TRC technique

tailored for the 3-D formulation is expressed as

P (nΔt) =
2n−1∑
m=0

En−m/2 + En−(m+1)/2

2
χm (2)

where

χm =
∫ (m+1)Δt/2

mΔt/2

ω2
p

νc

(
1 − e−νcτ

)
dτ.

Note that only a single convolution integral appears in (2),
while providing the same accuracy as the piecewise linear RC
technique with two convolution integrals.

As a result, we derive the following basic equations of the
frequency-dependent 3-D LOD-FDTD for the first step (the
normalized expression of field components is used):

En+1/2
x =

ε∞ − χ0/2
ε∞ + χ0/2

En
x +

1
ε∞ + χ0/2

φn
x

+
cΔt

2 (ε∞ + χ0/2)

(
∂H

n+1/2
z

∂y
+

∂Hn
z

∂y

)
(3a)

En+1/2
y =

ε∞ − χ0/2
ε∞ + χ0/2

En
y +

1
ε∞ + χ0/2

φn
y

+
cΔt

2 (ε∞ + χ0/2)

(
∂H

n+1/2
x

∂z
+

∂Hn
x

∂z

)
(3b)

En+1/2
z =

ε∞ − χ0/2
ε∞ + χ0/2

En
z +

1
ε∞ + χ0/2

φn
z

+
cΔt

2 (ε∞ + χ0/2)

(
∂H

n+1/2
y

∂x
+

∂Hn
y

∂x

)
(3c)

Hn+1/2
x = Hn

x +
cΔt

2

(
∂E

n+1/2
y

∂z
+

∂En
y

∂z

)
(3d)

Hn+1/2
y = Hn

y +
cΔt

2

(
∂E

n+1/2
z

∂x
+

∂En
z

∂x

)
(3e)

Hn+1/2
z = Hn

z +
cΔt

2

(
∂E

n+1/2
x

∂y
+

∂En
x

∂y

)
(3f)

NUSOD 2011

9978-1-61284-878-5/11/$26.00 ©2011 IEEE



10 15 20 25 30 35
-1.0

-0.5

0.0

0.5

1.0

Time (fs)

 E
x

LOD-FDTD
       CFLN=1 
                 =6
                 =10
FDTD
       CFLN=1

 

w
h

SiO2

Ag x
y

Fig. 1. Transient Ex component of the pulse.

where

φn
δ =

En
δ + E

n−1/2
δ

2
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}
in which c is the speed of light in a vacuum, and δ is
x, y or z. In the first step, we substitute (3d), (3e) and (3f)
into (3b), (3c), and (3a), respectively, and then implicitly
solve each resultant tridiagonal system of linear equations
with the Thomas algorithm. After obtaining the electric field
components En+1/2, we explicitly calculate (3d)-(3f) for
the magnetic field components Hn+1/2. In the second step,
although not shown, the equations can similarly be derived
and solved as in the first step.

To assess the 3-D LOD-FDTD, we analyze a gap plasmonic
waveguide illustrated in the inset of Fig. 1 (h = w =
50 nm), in comparison with the TRC-based explicit FDTD.
The dispersion of silver is taken into account by (1) with
ε∞ = 3.7, ωD = 9.1 eV, and νD = 0.018 eV [4]. The
refractive index of SiO2 is 1.45. The sampling widths are
Δx = Δy = Δz = 5 nm. The upper limit of the CFL
condition is defined as ΔtCFL (= 0.00956 fs), and the ratio of
Δt/ΔtCFL as CFL number (CFLN).

The transient Ex component of the pulse with a center
wavelength of λ = 1.55 μm is shown in Fig. 1. The pulse is
observed at the center of the waveguide, where the observation
plane is located 2 μm away from the incidence plane. For
the LOD-FDTD, CFLN=1, 6, and 10 are used, while for the
FDTD, CFLN=1 is used. The LOD result for CFLN=1 is found
to be almost identical to the FDTD result, validating the 3-D
LOD-FDTD. Even for the large CFLNs, the results are seen to
be reasonably accurate. For CFLN=6, the computational time
of the LOD-FDTD compares to that of the FDTD, while for
CFLN=10, the time successfully reduces to 60%.

The snapshots of the Ex and Hy components for CFLN=10
are presented in Figs. 2(a) and (b), respectively, at the max-
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Fig. 2. Snapshots of the propagating pulse. (a) Ex and (b) Hy components.
(c) and (d) are the corresponding eigenmode fields. Color represents intensity:
red, highest; blue, lowest.

imum field amplitude in Fig. 1. It is interesting to note that
the Hx component widely extends, compared to the Ex com-
ponent. They are in excellent agreement with the eigenmode
fields used for the incident pulse, shown in Figs. 2(c) and (d).
This indicates that the eigenmode fields accurately propagate
along the waveguide even for a large CFLN.

III. CONCLUSION

A frequency-dependent 3-D LOD-FDTD has been devel-
oped for the analysis of plasmonic devices. The effective-
ness is investigated through the analysis of a gap plasmonic
waveguide. It is shown that the acceptable numerical results
are obtained even with a large time step beyond the stability
criterion. The present formulation can also be extended to
another dispersion models, such as Debye, Lorentz and their
combination models.
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