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Abstract—In this paper we theoretically investigate the allowed
energies and associate wave-functions for Möbius strips with
varying thicknesses. We show that the induced strain in fab-
ricating these Möbius strips will have an pronounced impact on
the energies and wave-functions for thick strips, while for thin
strips the impact of strain is negligible. We furthermore, show
that a simpler strain free approximate theory base on differential
geometry is in excellent agreement with detailed finite element
calculations.

I. INTRODUCTION

It is nowadays possible to fabricate geometrically complex
nanostructures. For example, in the 2002 nature paper by
Tanda et al. [1] a crystalline nanoscale Möbius strip has been
fabricated. It is well-known that shape and size of nanos-
tructures have pronounced consequences for the electrical
and optical properties. Furthermore, deformations of these
structures markedly change these properties. These changes
can be utilized to design new and novel devices such as
sensors, optoelectronic devices and nanogenerators [2]. There
is, therefore, a need to investigate the consequences of chang-
ing the shape and size of nanostructures and the effect of
deformations on optoelectronic properties.

While the underlying theory for these kind of systems is
well established, there is still ample opportunity to develop
simple and more tractable models able to accurately describe
these systems. One such approach is to utilize differential
geometric techniques to put the governing equations on a more
generic form enabling new approximate approaches [3]. In this
work, this approximate approach is compared to more detailed
finite element calculation.

II. THEORY

In this section we outline the theory behind the calculation
of allowed energies and associate wave-functions for Möbius
strips based on the one-band model. For a more detailed
description consult the paper by Gravesen and Willatzen [3].

The parametrization of the Möbius strip is given by

~x(u1, u2, u3) = ~r(u1) + u2
(
~b(u1) + Ψ(u1)~t(u1)

)
− u3~n(u1),

(1)

where ~r(u1) is the parametrization of the median given in
equation (6), ~t is the unit tangent vector, ~n is the normal vector,

Fig. 1. The hydrostatic strain on the surface of a Möbius stripe with w =
3.333 nm, L = 200 nm, and t = 2.25 nm

~b is the binormal vector, Ψ = τ
κ , and ψ = dΨ

ds (s is the arc-
length). The coefficients c1, c2, and c3 have been found by
minimizing the bending energy while keeping the length fixed.

In order to determine the electron eigenvalues and eigenstate
including strain we solve the one-band Schröndinger equation,
in cartesian coordinates given by

− h̄2

2meff
∆χ+ acTr(ε)χ = Eχ, (2)

where meff is the effective mass, ∆ is the Laplacian, ac is
the deformation potential, ε is the strain tensor, and Tr(ε) is
the hydrostatic strain component. The strain tensor is given by

εij =
1

2

(
δij −

∂ ~R

∂vi

∂ ~R

∂vj

)
=

1

2

δij − 3∑
k,l=1

∂uk
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∂uk

∂ul
∂vj

∂~x

∂ul

 .

(3)

where ~R(v1, v2, v3) = ~x(u1(v1, v2), v2, v3) and

v1 =

∫ u1

0

|~r′(s)|ds+ u2Ψ, v2 = u2, and v3 = u3. (4)

The coordinates (v1, v2, v3) have been introduced to model a
Möbius strip which median has not been stretched during fab-
rication. In figure 1 we show the hydrostatic strain component
on the surface of the Möbius strip.

It is assumed that the electron is completely confined to
the Möbius strip and, as consequence, Dirichlet boundary
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conditions are imposed on the surface of the structure. As the
Möbius strip is rotated 180◦ we impose anti-periodic boundary
conditions on the end surfaces

χ(u1 = 0, u2, u3) = χ(u1 = 2π,−u2,−u3). (5)

In the paper [3] Gravesen and Willatzen have shown that
for a thin curved structure the Schröndinger equation without
strain can be approximated by a the separable equation

− h̄2

2me

(
∆Σ +

(
∂

∂u3

)2

+M2 −K

)
χ = Eχ, (6)

where ∆Σ is the Laplace-Beltrami operator on Σ, M and K
are the mean and Gaussian curvatures, respectively.

III. RESULT

In this section we present results for a L = 200 nm long,
w = 3.333 nm wide Möbius strip with thicknesses of t =
0.75 nm and t = 2.25 nm. The coefficients are in this case
given by c1 = 32.25 nm, c2 = 19.05 nm, and c3 = 6.26 nm.
We assume that the material of the Möbius strip is InAs and
use the values meff = 0.022m0 and ac = −5.08 eV for
the effective mass and the deformation potential respectively,
where m0 is the free electron mass.

In table I we list the first three allowed energies found using
the approximate (separable) model, the full model without
strain, and the full model taking into account strain. We
observe that the effect of strain is negligible for the 0.75 nm
thick strip, while the strain gives a significant contribution
for the 2.25 nm thick strip. The reason for this is that the
main contribution to the strain is coming from bending and
as the thickness is increased the bending strain increases as
is the case for a normal bend beam in classical mechanics.
In figure 2 we show the groundstate wave-function along the
center of the Möbius strip for the two thicknesses. In the
left column we show the groundstate without strain and in
the right the groundstate taking into account strain. Again
we see that for the thin strip, strain has a negligible effect,
while for the thick strip, there is a pronounced change in the
wave-function. We notice that the wave-function in the thick
structure is highly localized at two small areas of the strip.
These two areas corresponds to places in the strip with high
hydrostatic strain, see figure 1.

This shows that for thick bend nanostructures, strain effects
are important, and needs to be taken into account.

IV. CONCLUSION

We have investigated the effect of strain on electronic states
in Möbius strips. We have shown that the approximate theory
based on differential geometry and disregarding strain is very
accurate for thin Möbius strips while for thick Möbius strips

Fig. 2. Groundstates for Möbius stripe with w = 3.333 nm, L = 200 nm,
t = 0.75 nm (upper row), and t = 2.25 nm (lower row). The left plots are
eignestates without taking into account strain and the right plots with strain.
See Equation (4) for the definition of ν1 and ν2.

strain effects become important resulting in large discrepancies
between the approximate and exact solutions.
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TABLE I
THE FIRST THREE ALLOWED ENERGIES BOTH WITH AND WITHOUT STRAIN

AND USING THE APPROXIMATIVE ZEROTH-ORDER EXPANSION IN u3 .

E(1)
approx. no strain strain

t = 0.75 nm 7.9790 7.9793 7.9776
t = 2.25 nm 1.2265 1.2275 1.1408

E(2)
approx. no strain strain

t = 0.75 nm 7.9802 7.9803 7.9783
t = 2.25 nm 1.2277 1.2287 1.1408

E(3)
approx. no strain strain

t = 0.75 nm 7.9818 7.9822 7.9817
t = 2.25 nm 1.2293 1.2300 1.1871

~r(u1) =

(
c1 sin(u1), c2

(
sin(u1)− 1

2
sin(2u1)

)
, c3

(
5

3
− 5

2
cos(u1) + cos(2u1)− 1

6
cos(3u1)

))
, (6)
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