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Abstract—A finite element method (FEM) approach of cal-
culating a single emitter coupled to plasmonic waveguides has
been developed. The method consists of a 2D model and a 3D
model: (I) In the 2D model, we have calculated the spontaneous
emission decay rate of a single emitter into guided plasmonic
modes by using the translation symmetry of the waveguides; (II)
In the 3D model, we have implemented the FEM calculation to
include the radiation modes and the nonradiative contributions
by solving the wave equation with a harmonic source terms. The
FEM approach is rather flexible, and can handle the plasmonic
waveguides with different geometries, as long as only one guided
plasmonic mode is predominantly excited.

I. INTRODUCTION

Substantial efforts have been made to solve the wave
equation, especially with arbitrary time dependence. However,
only for a few geometries such as spheres and cylinders, one is
able to obtain analytical solutions, by the assistance of, e.g.,
Mie’s theory and other modal descriptions. For many other
geometries, one has to resort to numerical methods, like finite-
difference time-domain (FDTD) method, FEM, or other meth-
ods. These numerical methods are indispensable in modern
photonics, especially in modeling complex photonic devices.
Normally FDTD can model dielectric structures reasonably
well, i.e., photonic crystals, however it has severe drawbacks
for modeling plasmonic structures due to its typical rectangular
grids and the piecewise constant approximation of the fields
within grids. And the approximation in dielectric functions
of the material in FDTD may give rise to considerable error
in broadband calculations. Besides local density of optical
states (LDOS) calculations may present additional challenges
for FDTD, due to difficulties in accurately transforming 𝑗 ⋅𝐸
from the time to frequency domain. Due to the more advanced
discretization strategy for complex geometric structures, and
FEM can handle plasmonic structures with strong field local-
ization very well. In many complex photonic environments,
it is highly nontrivial to probe the LDOS with acceptable
accuracy. In the following, we will report a generally appli-
cable quantitative FEM method to probe LDOS for modeling
spontaneous emission (SE) in complex plasmonic structures.

II. MODEL

We consider an ideal quantum emitter coupled to a plas-
monic waveguide. The excitation energy of the quantum emit-
ter can be dissipated either radiatively or non-radiatively. Ra-
diative relaxation is associated with the emission of a photon,
whereas non-radiative relaxation can be various pathways such
as coupling to vibrations, resistive heating of the environment,

or quenching by other quantum emitters. The resistive heating
of the metallic waveguide is the only mechanism of non-
radiative relaxation considered in our model. The quantum
emitter is positioned in the vicinity of the metallic nanowire,
thus there are three channels for the quantum emitter to decay
into, i.e., the radiative channel, the plasmonic channel, and the
non-radiative channel. The radiative channel accounts for the
SE in the form of far field radiation. The plasmonic channel is
the excitation of the plasmonic mode, which is guided by the
plasmonic waveguide. The non-radiative channel is associated
with the resistive heating of the lossy metals, which is due to
electron-hole generation inside the metals. The corresponding
decay rates are denoted by 𝛾𝑟𝑎𝑑, 𝛾𝑝𝑙, and 𝛾𝑛𝑜𝑛𝑟𝑎𝑑, respectively.
The SE 𝛽 factor is defined by 𝛽 =

𝛾𝑝𝑙

𝛾𝑡𝑜𝑡𝑎𝑙
, where 𝛾𝑡𝑜𝑡𝑎𝑙 is the

sum of the three rates, 𝛾𝑡𝑜𝑡𝑎𝑙 = 𝛾𝑟𝑎𝑑 + 𝛾𝑛𝑜𝑛𝑟𝑎𝑑 + 𝛾𝑝𝑙. The 𝛽
factor gives the probability that the quantum emitter excites a
single plasmonic mode.

Due to the invariance along the Z axis, the 𝑍 dependence
for eigenmodes of an arbitrary (plasmonic) waveguide can
be separated, i.e., �̄�(𝑥, 𝑦, 𝑧) = �̄�𝛼(𝑥, 𝑦)𝑒

−𝑗(𝜔𝑡−𝛽𝑧). We as-
sign 𝛼 = {𝑝, 𝛽} to label a guided plasmonic mode, where
𝛽 denotes the propagation constant (the component of the
wave vector along the Z-axis), and the index 𝑝 represents
the polarization of the mode. With some algebra, one can
determine the normalized decay rate of the emitter oriented
along 𝑋 direction into the plasmonic mode 𝛼 as given by
𝛾𝑝𝑙

𝛾0

=
3𝜋𝑐𝜀0𝐸𝛼0,𝑋(𝑟)𝐸∗

𝛼0,𝑋(𝑟)

𝑘2

0

∫
𝐴∞

(�̄�×�̄�∗)⋅𝑧𝑑𝐴 , where 𝐴∞ denotes integration

over the transverse plane, and 𝐸𝛼0,𝑋 the 𝑋 component of
electric field for mode 𝛼. However, it is difficult to calculate
the radiation modes in the transverse plane, due to the fact
that the field components for the radiation mode in the plane
do not vanish no matter how large the modeling domain is.
Therefore, we implement a 3D model to include the radiation
modes, as well as the nonradiative contributions, by solving the
wave equation with a harmonic (time dependent) source term,
[∇× 1

𝜇𝑟
∇×−𝑘20𝜀(𝑟)]�̄�(𝑟, 𝜔)−𝑗𝜔𝜇0𝐽(𝜔) = 0. Concerning the

implementation of a FEM calculation, the wave equation needs
to be reformulated into its variational form, which enables
us to use the standard finite element solution procedures,
including discretization and factorization of a sparse matrix.
Eventually, the boundary-value problem was solved by utiliz-
ing a commercial software package, COMSOL Multiphysics
[1]. It is crucial to truncate the computational domain properly.
As shown in Fig. 1, we use two techniques for truncating
the modeling domain: I) In the X-Y plane, the computation
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Fig. 1. A single quantum emitter coupled to a metallic nanowire. The grey
transparent region represents the perfectly matched layers, the mode matching
boundary condition is applied on the top and the bottom of the structure. The
quantum emitter is implemented by an electric line current.
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Fig. 2. Length dependence of 𝛾𝑡𝑜𝑡𝑎𝑙/𝛾0 for the metallic nanowire. The wire
radius is 20 nm, the distance to the wire edge is 30 nm.

domain is truncated by the perfectly matched layers. II) Along
the Z-axis, the computation domain is terminated by a mode
matching boundary condition. There are different options for
realizing the mode matching boundary to absorb a single
mode, depending on whether the absorbed mode is TE, TM or
a hybrid mode. The total decay rate, 𝛾𝑡𝑜𝑡𝑎𝑙, is extracted from
the total power dissipation of the current source coupled to
the nearby metallic waveguide, 𝛾𝑡𝑜𝑡𝑎𝑙/𝛾0 = 𝑃𝑡𝑜𝑡𝑎𝑙/𝑃0, where
𝑃𝑡𝑜𝑡𝑎𝑙 = 1/2

∫
𝑉
𝑅𝑒(𝐽∗ ⋅ 𝐸𝑡𝑜𝑡𝑎𝑙)𝑑𝑉 is the power dissipation

of the current source coupled to the metallic waveguide, and
𝑃0 = 1/2

∫
𝑉
𝑅𝑒(𝐽∗ ⋅ 𝐸0)𝑑𝑉 is the emitted power by the same

current source in vacuum, for further details see Refs. [2,3].

III. RESULTS AND DISCUSSIONS

Essentially the accuracy of 𝛾𝑡𝑜𝑡𝑎𝑙/𝛾0 depends on the length
(𝐿0) of the plasmonic waveguide, i.e., the modeling domain,
since radiation modes and other higher order guided modes
will be reflected due to a finite 𝐿0. We check the validity of
the mode matching boundary condition via of 𝛾𝑡𝑜𝑡𝑎𝑙/𝛾0 for a
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Fig. 3. Distance dependence of the plasmonic decay rates and SE 𝛽 factors
for the square plasmonic waveguide.

cylindric nanowire, shown in Fig. 2. The variation in the total
decay rate is reduced by increasing 𝐿0, and the damped oscil-
lation of the total decay rate with 𝐿0 indicates a certain amount
of reflection from radiation modes, which is confirmed by the
period of the oscillation (equal to the wavelength in a media
with 𝜀 = 2). The relative error on the computed data is rather
small, less than ±1.0% for 𝐿0 larger than 1.75 𝜇𝑚. Using
our FEM modeling technique, we studied the coupling of the
quantum emitter with a square plasmonic waveguide that are
compatible with current lithographic fabrication technology.
As shown in the inset in Fig. 3, the emitter is oriented along the
𝑋 axis, and the distance dependence of the plasmonic decay
rates and SE 𝛽 factors is calculated as function of distance
from the emitter to the metal surface along the 𝑋 axis. For the
square plasmonic waveguide, though the electric field of the
fundamental mode is concentrated around the four corners, one
can achieve an efficient coupling between the plasmonic mode
and a horizontally oriented quantum emitter. With optimized
side length of the waveguide and distance of the emitter to the
edge of the waveguide, the 𝛽 factor can reach 80%.

IV. CONCLUSION

We have developed a robust and flexible FEM modeling
technique to study the light emission of a single emitter
coupled to plasmon waveguides. Importantly, our FEM ap-
proach is also valid for studying light emission in many
other structures, like photonic crystal crystal cavities, and
optical nanoantennas. We believe our method is useful in
the development of efficient optoelectronic devices where the
LDOS play a role.
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