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 Abstract—In this talk we demonstrate that when using the 
finite-difference time-domain simulations to study an interested 
photonic device, the dispersive electric permittivity of an 
involved medium can be modeled with the complex-conjugate 
pole-residue pairs very effectively. The theoretical foundation of 
the method is presented first, followed by a recent application 
example of simulating the single-molecule fluorescence 
enhancement by a gold bowtie nanoantenna. 

The finite-difference time-domain (FDTD) method is 
arguably the most popular numerical method for studying 
electromagnetic field distribution and wave propagation in a 
photonic device with complex geometry. Yet as a 
time-domain method, one challenge it often faces is the 
incorporation of the experimentally determined electric 
permittivity of a certain dispersive medium, which is 
normally available as a discrete dataset with varying values 
over a range of frequencies. In conventional FDTD practice, 
the typical approach is to fit such a dataset as the sum of 
multiple Debye poles and Lorentz pole pairs [1]. The 
computational cost incurred, however, can be significant for 
many realistic optical media, when a large number of poles 
are required in order to obtain a satisfactory fit. 

To address this problem, we propose in [2] an alternative 
method that instead uses the complex-conjugate pole-residue 
(CCPR) pairs as the standard fitting basis for any given 
electric permittivity  
ሺ߱ሻߝ                       ൌ ஶߝ଴ߝ ൅ ଴ߝ ෍ ቈ ܿ௣݆߱ െ ܽ௣ ൅ ܿ௣݆߱כ െ ܽ௣כ ቉௉

௣ୀଵ , 
                          
where (ܿ௣, ܿ௣כ) and (ܽ௣, ܽ௣כ ) are complex conjugate pairs. In 
fact, when ܿ௣ ൌ ௣ߝ∆ ൫2߬௣൯⁄  and ܽ௣ ൌ െ 1 ߬௣⁄ , (1) would 
represent a medium entirely modeled by Debye poles; on the 
other hand, when ܿ௣ ൌ ௣߱௣ଶߝ∆݆ ൫2ඥ߱௣ଶ െ ௣ଶ൯ൗߜ and ܽ௣ ൌെߜ௣ െ ݆ඥ߱௣ିଶ ௣ଶߜ , (1) would represent a medium entirely 
modeled by Lorentz pole pairs. Here we adopt the same 
notation convention as in [1]. Nevertheless, despite that 
Debye poles and Lorentz pole pairs are special cases of CCPR 

pairs, there is some important distinction between them and 
general CCPR pairs. For a Debye pole, both ܿ௣ and ܽ௣ must 
be real. For a Lorentz pole pair, ܿ௣ must be imaginary. In 
contrast, for a general CCPR pair, both ܿ௣ and ܽ௣ can have 
a nonzero real part as well as a nonzero imaginary part, which 
adds additional degree of freedom in finding appropriate 
fitting parameters. Hence to achieve a particular modeling 
accuracy, one can usually expect to introduce fewer poles by 
using general CCPR pairs as the fitting basis than Debye 
poles and Lorentz pole pairs, which directly translates to 
lower computational cost.  

The implementation of the method of CCPR pairs in a 
FDTD simulation can be done through either the 
piecewise-linear recursive convolution (PLRC) method or the 
auxiliary differential equation (ADE) method. For example, if 
the ADE method is used, which has the advantages when 
nonlinear effects need to be considered and when other 
differential equations such as the rate equation in laser 
simulations need to be included, with respect to each term in 
the summation in (1) two current items ܬ௣ሬሬሬԦሺ߱ሻ and ܬ௣ᇱሬሬሬԦሺ߱ሻ 
are introduced, where ܬ௣ሬሬሬԦሺ߱ሻ ൌ ଴ߝ ܿ௣ ൫݆߱ െ ܽ௣൯⁄  ሬԦሺ߱ሻܧ݆߱
and ܬ௣ᇱሬሬሬԦሺ߱ሻ ൌ ଴ߝ ܿ௣כ ൫݆߱ െ ܽ௣כ ൯⁄  ሬԦሺ߱ሻ. That leads to a set ofܧ݆߱
time-domain differential equations, as in  

ݐ݀݀  ሻݐ௣ሬሬሬԦሺܬ െ ܽ௣ܬ௣ሬሬሬԦሺݐሻ ൌ ଴ܿ௣ߝ ݐ݀݀  ሻݐሬԦሺܧ

ݐ݀݀    ሻݐ௣ᇱሬሬሬԦሺܬ െ ܽ௣כ ሻݐ௣ᇱሬሬሬԦሺܬ ൌ כ଴ܿ௣ߝ ݐ݀݀  .ሻݐሬԦሺܧ
 

Since according to (2), ܬ௣ሬሬሬԦሺݐሻ and ܬ௣ᇱሬሬሬԦሺݐሻ are always complex 
conjugate to each other in standard FDTD implementations, 
one only needs to store and update either one of them rather 
than both. For example, if ܬ௣ሬሬሬԦሺݐሻ  is selected, the 
corresponding time-marching formulation can be derived by 
combining the auxiliary differential equation in (2) and 
Maxwell’s curl equations, which is 
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ሬԦሺ௡ାଵሻ∆௧ൌܧ ቈ2ߝ଴ߝஶ ൅ ∑ 2ܴ௘൫ߚ௣൯ െ ஶߝ଴ߝ௉௣ୀଵ2ݐ∆ߪ ൅ ∑ 2ܴ௘൫ߚ௣൯ ൅ ௉௣ୀଵݐ∆ߪ ቉ ሬԦ௡∆௧ܧ
൅ ݐ∆2 · ቂ׏ ൈ ሬሬԦ൫௡ାଵܪ ଶൗ ൯∆௧ െ ܴ௘ ∑ ൫1 ൅ ݇௣൯௉௣ୀଵ ஶߝ଴ߝ௣ሬሬሬԦ௡∆௧ቃ2ܬ ൅ ∑ 2ܴ௘൫ߚ௣൯ ൅ ௉௣ୀଵݐ∆ߪ  

௣ሬሬሬԦሺ௡ାଵሻ∆௧ܬ  ൌ ݇௣ܬ௣ሬሬሬԦ௡∆௧ ൅ ௣ߚ ቆܧሬԦሺ௡ାଵሻ∆௧ െ ݐ∆ሬԦ௡∆௧ܧ ቇ. 
The notation definitions are omitted here due to space 
limitation. Please refer to [2] for details. As can be seen, in a 
given FDTD simulation, each new time step starts with 
computing ܧሬԦ, and then updating every ܬ௣ሬሬሬԦሺ1 ൑ ݌ ൑ ܲሻ, and 
finally obtaining ܪሬሬԦ in the same way as in the case of a 
simple nondispersive medium.  

The effectiveness of the method of CCPR pairs is 
demonstrated convincingly in the design of a gold bowtie 
nanoantenna structure that achieves an enhancement factor of 
single-molecule fluorescence ten times higher than what 
reported previously [4]. As shown in Fig. 1(a), the structure 
consists of a SiO2 substrate, an indium tin oxide (ITO) layer, 
and a Poly(methyl methacrylate) (PMMA) layer. Inside the 
PMMA layer is a 20nm thick gold (Au) layer deposited on a 
titanium (Ti) layer of 4nm thick. The bowtie shape of the Au 
layer is clearly indicated in the simulated local electric field 
intensity profile in Fig. 1(b). To ensure an accurate FDTD 
simulation result over the entire interested wavelength range, 
general CCPR pairs are used to model Au’s dispersive 
electrical permittivity. As shown in Fig. 2, with six CCPR 
pairs, one can find a permittivity function that is in excellent 

agreement with the tabulated experimental data in [3]. In 
consequence, the fluorescence enhancement factor estimated 
from the FDTD simulation matches the values measured from 
the fabricated devices quite well.      

Besides Au, other dispersive media such as metal silver 
(Ag), semiconductor quantum well GaAs/Al0.4Ga0.6As, and 
metal Tungsten (W) have also been proven [2][5] that their 
electric permittivity can be modeled with general CCPR pairs 
much more efficiently than the conventional approach.  
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Fig. 1 (a) Side view of the bowtie antenna described in [4] that consists 
of a SiO2 substrate (n=1.47), a 50nm ITO (n=2) layer, and a 30nm 
PMMA (n=1.49) layer, inside which is a gold bowtie structure of 20nm 
thick sitting on top of a Ti layer of 4nm. (b) Top view of the local 
electric field enhancement from the FDTD simulation.   
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Fig. 2 (a) Real (b) Imaginary part of Au’s complex refractive index
n-iκ. The black circles represent the experimental data taken from
[3], and the red line represents the fitting result with 6 CCPR pairs. 
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