
Abstract— The process of refractive index grating formation in 
a photorefractive crystal, used as the  self-adapting spectral filter 
in an external cavity laser, is studied with a self-consistent model. 
The model is based on the Finite Difference solution of the 
Kukhtarev equations. The results obtained are compared with 
approximate analytical models. 

I. INTRODUCTION 
Photorefractive crystals have many applications in optics 

and optoelectronics. In particular, they are used in holography 
[1] and in self-adapting external cavity lasers [2]. In the 
holographic applications, the grating is typically written by 
obliquely propagating monochromatic waves. However, when a 
photorefractive crystal is used in external cavity lasers, the 
grating is written along the direction of the wave propagation by 
the counter-propagating waves having different frequencies [2]. 
The former problem has received considerable attention in the 
literature [1, 3, 4, 5]. In this contribution the authors consider 
the latter problem, i.e. the one encountered when analyzing the 
spectral response of the self-adapting external cavity laser 
mirror [2]. 

In a self-adapting external cavity laser [6], the 
counter-propagating waves produce a standing wave pattern in 
the photorefractive crystal. This standing wave pattern writes a 
refractive index grating in the crystal via the photorefractive 
effect. The process of grating formation in the photorefractive 
crystal is described by the Kukhtarev equations [3]: 
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where N is the free-electron density; DN +  is the ionized donor 
concentration; ND is the total donor concentration; J is the 
current; ESC is the electrostatic space-charge field; I is the 
intensity distribution; e is the electronic charge; s is the 
ionization cross section; β is the thermal excitation rate 
(proportional to the dark current); γR is the recombination rate; 

εs is the dielectric constant tensor, 2
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μ⋅ ⋅= ; NA is the acceptor concentration and K is the 

grating vector. 
In order to solve (1) – (4) subject to a given illumination 

pattern, we use the Finite Difference method. For this purpose 
we first combine the Kukhtarev equations into one nonlinear 
differential equation for the 1D case: 
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where 
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use standard central difference approximations and obtain: 
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where ξ is given by the expression: 
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If we arrange Eq.(7) as: 
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where a=o3, 
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5 4i ic o N o N ξ= + +  we can formally 

calculate the root: 
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Now we can form fixed point iteration by calculating the 
electron density from (10) subject to known constants a, b and c 
calculated using an initial guess of the electron density 
distribution. The newly calculated values of N are then used to 
update the coefficients and (10) is solved again to obtain the 
updated electron density distribution. This process continues 
until convergence is reached. We note that the other root of (9) 
does not correspond to a physically relevant solution. 

II. MODELLING PARAMETERS 
As an example, we consider the formation of a refractive 

index grating in BaTiO3. The calculation parameters are given 
in Tab.1. [3]  

Tab.1 Parameters of BaTiO3 
Name Value Unit 
r42 1640×10-12 m/V 
r13 8×10-12 m/V 
r33 28×10-12 m/V 
no 2.32866  
ne 2.29512  
λ 966.028 nm 
γR 5×10-14 m3/s 
μ 0.5×10-4 m2/V-s 
NA 3×1022 m-3 
ND 200NA m-3 
s 1×10-5 m2/J-s 

III. RESULTS 
Figure 1 shows the calculated dependence of the refractive 

index perturbation, which is results from the photorefractive 
effect, on the longitudinal position. The illumination pattern 

modulation depth is 2
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=0.9986, which is typical for 

standing wave patterns created by waves counter-propagating 
within an external laser cavity [6]. This figure shows that an 
analytical approach is not accurate even if 3 terms are used in 
the expansion series given in [4]. Figure 2 summarizes the 
comparison between numerical and analytical methods for 
various values of the modulation depth. The discrepancy 
between the numerical and analytical results was quantified 
using the following error norm:     
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As expected for low values of m, the difference between the 
analytical and numerical results is negligible but the 
discrepancy grows significantly for large modulation depths. 
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Fig.1 Dependence of the refractive index perturbation on the 

longitudinal position (m=0.9986) 
 

 
 
Fig.2 Dependence of the error norm on the modulation depth 




