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Abstract— A fast and efficient multi-domain spectral method (MDSM)
based on wide range non-orthogonal predefined exponential basis set is
presented. This method works extremely well for semi-infinite differential
problems. It spans wide range of exponential decay rates with multi
scaling and does not suffer from zero crossing. These two conditions
are necessary for many physical problems. For comparison, the method
is used to approximate different exponentially decaying functions and
compared with Laguerre basis method. Also for comparison purpose, it
is used to analyze arbitrary quantum wells (QW) and optical waveguides.
The comparisons exhibit the accuracy and the efficiency of the presented
method. In the analytical limit, the relative error in the quantized energy
level of the studied QW is in the order of 10−12 with very small number
of bases.

I. INTRODUCTION

Spectral method is one of the weighted residual methods where
the unknown functions are approximated by either an expansion of
or interpolation by a selected basis set. In this paper, the functional
expansion method is used. Spectral method works very well for
homogeneous and smooth computational windows. But, it suffer
from the Gibbs phenomenon if the structural function of the studied
problem is not analytical. the Gibbs phenomenon is generally a
peculiarity of any functional approximation at simple discontinuity.
To avoid this problem, the computational window is divided into
homogeneous domains where the discontinuities lie at the boundaries.
Then, the spectral method is applied alone in each domain to build
the matrices and vectors. These are then joined together by applying
boundary conditions between domains. This approach is known as
multi-domain spectral method (MDSM) [1]–[3].

In many real-valued physical system, the extensions toward infini-
ties decay exponentially as:

f ∝ e±αx (1)

where ± is used to cover both ∓∞ with positive α. In spectral and
multi domain spectral methods, this is one of the main problems. A
review paper by Shen and Wang discusses this in further details [4].
To overcome this problem, many techniques where used. They can
be classified in the following three main categories:

• Using exponentially decaying basis sets such as physical
Hermite and Laguerre functions and rational Chebyshev and
Legendre polynomials. Some other basis sets are used as well.
This predefines a narrow ranged decay rate and hence limit the
generality. Some researchers adopted them in studying phenom-
ena known that they can be analyzed using such functions. For
example, Laguerre function is the base for radial extension of
electron wave functions in hydrogenic atoms. So, it is expected
to work for electronic distributions of some hydrogenic like
atoms. Beside the narrow ranged predefined decay rate, this
approach inherently forces many zero crossing since most of the
used basis sets are forms of Jacobi polynomials which has N
zeros for the N th order polynomial. In many physical problems,

this is expected and allowed. However, in physical system where
the decay is behaving as described by Eq. (1), this should not
be the case.

• Truncating the numerical window; this is used as well by
many researchers. The unbounded window is truncated and
additional boundary conditions are used to force an asymptotic
exponential behavior, i.e. the function and its first derivatives
vanish at the truncating points. This reduces the analytical
accuracy of spectral methods by adding the truncation error.
Also, this does not eliminate zero crossing and hence it doesn’t
fit the system with Eq. (1) exponential decay.

• Single scaling of the coordinates; This is similar to the first
category; but with coordinate scaling where

x ⇒ cx (2)

Therefore the predefined decay rate is also scaled. The scaling
factor c is chosen intuitively to fit the studied problem. However,
this results in losing the generality and missing many eigen
solutions in eigenvalue problems where the decaying rates for
the different eigenvalue solutions are generally different.

The presented method overcome zero-crossing and single scaling
problems by approximating the decaying domain functions by expo-
nential basis set with exponentially spanned decaying rates as follows:

f =

N∑
n=0

anun =

N∑
n=0

ane−αnx (3)

where
αn = bds+ n

N
(de−ds) (4)

b is the used exponential base and ds and de are the smallest
and largest used powers respectively. They should be predefined
intuitively based on the studied problem. Yet, they allow many
possible decay rates with very small number of bases. For example,
by setting N = 10, b = 10, ds = −5, and de = 5, 11 bases can
be used to approximate any exponential function with decay rates
between 0.00001 and 100000.

II. SOME APPLICATIONS

A. Approximating of distant exponentially decaying functions

In this subsection, the presented method is applied to approximate
five exponentially decaying function and compared with Laguerre
basis method. The used decaying rates are 0.00535, 0.0632, 0.752,
81.2, and 926. Fig.(1) shows the obtained approximation using
unscaled modified Laguerre bases.

It is clear that with 25 used bases, only two function out of the five
are approximated adequately. Yet, the method is converging but very
slowly for the remaining functions. For e−0.752x , very few bases are
needed to approximate the function to an adequate accuracy. If scaling
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Fig. 1. Approximations (top) and maximum approximation errors and their
standard deviations (bottom) of the five exponentially decaying functions using
unscaled modified Laguerre bases. The used decaying rates are 0.00535,
0.0632, 0.752, 81.2, and 926.

was used, only two or mostly three functions would be approximated
adequately depending on the scaling. For many eigenvalue problems,
this is a very serious limitation where different eigenvalues have
different decaying rates. So, only part of the eigenvalues can be
obtained accurately. The same five functions are approximated using
the presented method with b = 10, ds = −4, and de = 4. The
resulted approximations and their associated errors are shown in
Fig.(2). All the five functions were approximated adequately using
the same exponential bases and the convergence is geometric as can
been seen.
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Fig. 2. Approximations (top) and maximum approximation errors and their
standard deviations (bottom) of the five exponentially decaying functions
using the presented method with the same bases. The used decaying rates
are 0.00535, 0.0632, 0.752, 81.2, and 926.

In many applications, it is crucial to find many eigenvalues.
By using the presented method, this can be done simultaneously.
While by using the modified Laguerre bases, the algoritm should
be repeated with different scaling and error detection to obtain the

Interval (nm) m∗/m0 V (x) (meV)

D1 (−∞,-10) 0.0919 225
D2 (-10,10) 0.067 0
D3 (10, ∞) 0.0919 225

TABLE I
THE STRUCTURAL PARAMETERS OF THE STUDIED QW
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Fig. 3. The relative error of multi-domain spectral method and the exact
solutions of the studied QW

required number of eigenvalues. However for the set of eigenvalues
that is obtained accurately using the modified Laguerre bases, the
convergence is faster than the convergence of the presented method.

B. Single QW without biasing field

The structure is simply a thin layer of GaAs sandwiched in
Al0.3Ga0.7As. The width of the QW layer is 20 nm. The numerical
window is divided into three domains. The structural parameters in
each domain are shown in the Table-I This structure can be analyzed
analytically, where the energy states are only the solutions of the
following characteristic equation(

1 + γ2) eiαL − (
1 − γ2) e−iαL = 0 (5)

where

α =

√
E 2mw

h̄2
β =

√
(Vb − E)

2mb

h̄2
γ = i

mb

mw

α

β

where mb and mw are the effective masses in the barrier and the
well and L is the width of the well. The relative errors of the results
obtained using the presented method and the exact solution are shown
in Figure-3 against the number of the used bases in each domain. It is
clear that acceptable results can be achieved with only 9 basis in each
domain. In QWs, an accuracy tolerance of 0.001 meV is usually very
sufficient. The speed of the method mainly depends on the largest
used matrix in the analysis. We reach the machine accuracy with 15
basis in each domain where the largest matrix is only 45× 45. This
is handled very easily and rapidly. The whole analysis lasted about
half a second.
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